
A Tool for Assessing Performance Requirements
of Data-Intensive Applications

Abel Gómez1, Christophe Joubert2, and José Merseguer1

1 Departamento de Informática e Ingeniería de Sistemas
Universidad de Zaragoza, Spain

{abel.gomez|jmerse}@unizar.es
2 Prodevelop SL, Spain

cjoubert@prodevelop.es

Abstract. Big Data is becoming a core asset for present economy and
businesses, and as such, Data-Intensive Applications (DIA) that use Big
Data technologies are becoming crucial products in the software de-
velopment market. However, quality assurance of such applications is
still an open issue. The H2020 DICE project aims to define a quality-
driven framework for developing DIA based on model-driven engineering
(MDE) techniques. In this paper we present a key component of the
DICE Framework, the DICE Simulation Tool. The tool is able to sim-
ulate the behavior of a DIA to assess its performance using a Petri net
model. To showcase its capabilities we use the Posidonia Operations
case study, a real-world scenario brought from one of our industrial part-
ners. In addition to this paper, a video demonstrating the tool is available
at http://tiny.cc/z1qzay.

1 Introduction

In recent years, the software development world has been witnessing an increas-
ing complexity of systems and data that cloud-based infrastructures have made
possible. With the broad availability of distributed clusters and programming
models such as MapReduce, stream processing frameworks or NoSQL databases,
the software development market expects to grow considerably for data-intensive
cloud applications in the next years. Thus, there is now an urgent need for novel,
highly productive, software engineering methodologies capable of dealing with
software development challenges in such a new environment.

The DICE project [1] aims to define a quality-driven framework for de-
veloping data-intensive applications (DIA) that leverage Big Data technolo-
gies hosted in private or public clouds. Following the model-driven engineer-
ing (MDE) paradigm, applications are described using the Unified Modeling
Language (UML), and specific DIA characteristics are annotated using a novel
profile, the DICE profile. A set of simulation, analysis and optimization tools
use DICE-profiled models to obtain high-quality applications. One of these tools
is the so-called Simulation Tool, which allows evaluating quality properties of
DIA, specifically, performance requirements.

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016), pp. 159-169.
15-17 junio 2016, Granada, España. ISBN: 978-84-16478-90-3

The paper is organized as follows: Section 2 presents the Simulation Tool
architecture with its internal data flows, while Section 3 presents the Posidonia
Operations case study. In Section 4 we put the Simulation Tool in action: first we
use the Posidonia Operations case study to describe the modeling foundations,
and second, we show what the tool looks like from the users’ point of view.
Finally, Section 5 concludes the paper.

2 The DICE Simulation Tool

Figure 1 shows the simplified architecture of the Simulation Tool and its internal
data flows.

The DICE-IDE [2] is an Eclipse-based [3] environment in which the differ-
ent components are integrated. An assessment process starts by defining a set
of DICE-Profiled UML models. For this stage, the Papyrus UML modeler is
used [4]. Papyrus UML is one of the open source UML modeling tools that
support the MARTE (Modeling and Analysis of Real-time Embedded Systems)
profile [5], on which the DICE profile is based. To assess some performance re-
quirement in a model, a user (the QA Engineer) should use the Simulator GUI
to start a simulation. The Simulator GUI is an Eclipse component specifically
designed to contribute a set of graphical interfaces to the DICE-IDE. These in-
terfaces are tighly integrated within the DICE-IDE providing a transparent way
for interacting with the underlying analysis tools. The Simulation Configuration
Component is in charge of: (i) asking for the model to be simulated; and (ii) ask-
ing for any additional data required by the Simulator. When the user finishes the
configuration of a simulation, the Configuration Tool passes two different files to
the Simulator : the DICE-profiled UML model (i.e., the model to be analysed)
and the Configuration model.

(Eclipse-based) DICE IDE

DICE Simulation Tool

Simulator GUI Simulator
————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

DICE-Profiled

UML Model

Configuration

Model

Assesment of

Performance

Requirements

————————
————————
————————
————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————
————————————————

GreatSPN

files

GreatSPN

Simulation

Configuration

Component

GreatSPN

result files

M2M (QVTo)

M2T (Acceleo)

Solution Builder

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

PNML

File

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

DICE-profiled

UML Models

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

<—>
 <—>
 <———>
 ————
 —————————
 </———>
 </—>
 <————————>
 <———————>
 </——————>
 <—>
 </—>
 </————————>
</—>

Papyrus UML
Modeler

Fig. 1: High-level view of the tool architecture

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 160

The Simulator is an OSGi [6] component that runs in background. It has been
specifically designed to orchestrate the interaction among the different tools that
perform the actual analysis. The Simulator executes the following steps: (i) it
transforms the UML model into a PNML3 [7] file using a model-to-model (M2M)
transformation tool; (ii) it converts the previous PNML file to a GreatSPN [8]
specific file format using a model-to-text (M2T) transformation tool; (iii) it
analyses the GreatSPN model using the GreatSPN tool; and (iv) it builds a
tool-independent solution from the tool-specific file produced by GreatSPN.

To execute the M2M transformations we have selected the Eclipse QVT Op-
erational [9] transformations engine. QVT [10] is the standard language proposed
by the OMG [11] (an international standards consortium that also defined the
UML and MARTE standards) to define M2M transformations.

To execute the M2T transformations we have selected Acceleo [12]. Starting
from Acceleo 3, the language used to define an Acceleo transformation is an
implementation of the MOFM2T standard [13], proposed by the OMG too. In
this sense, we have selected Acceleo to make all our toolchain compliant to the
OMG standards, from the definition of the initial (profiled) UML models to the
3rd party analysis tools (which inevitably use a proprietary format).

The GreatSPN [8] analysis tool is a complete framework for the modeling,
analysis and simulation of Petri nets. This tool can leverage those classes of Petri
nets needed by our simulation framework, i.e., Generalized Stochastic Petri Nets
(GSPN) and their colored version, namely Stochastic Well-formed Nets (SWN).

Finally, the tool-independent report produced by the Simulator is presented in
the DICE-IDE using a graphical component of the Simulator GUI. This compo-
nent provides a comprehensive Assesment of Performance Requirements report
in terms of the concepts defined in the initial profiled UML model.

3 The ��������� Operations case study

Posidonia Operations [14] is a customizable Integrated Port Operations Man-
agement System that allows a port to optimize the operational maritime activi-
ties related to the vessel flow within the service area of the port, integrating all
the involved stakeholders and all the relevant information systems.

The vessel becomes the centre of the system, and all the actions and data
are linked to the vessels through an integrated operator console that central-
izes all the significant information coming from external sources and systems.
Examples of such external systems are radars, Automatic Identification Sys-
tems (AIS), vessel traffic services (VTS), meteorology services, communication
systems, Port Management Systems (PMS), Port Community Systems (PCS),
safety and security systems or cartography services, among others.

Posidonia Operations is designed to cover all the phases of a vessel: re-
quest, authorization, port approach, port enter, berthing and unberthing, berth
change, anchoring and port leaving. It also fulfils port operations, including
3 PNML is an ISO to serialize and interchange Petri net specifications. The acronym

stands for Petri Net Markup Language

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 161

berth planning, coordination and register of pilots, tugs and moorers activities,
vessel supplies and bunkering, wastes and disposal, incidents, repairs, port inner
traffic, etc.

A real time analysis engine based on spatial information can be configured to
automatize relevant operational events like anchoring, berthing/unberthing, pi-
lots and tugs operations, bunkering, enter and exit of areas like port service area,
waypoints or inner harbour, port exit with pending requested anchoring, etc.

3.1 Architecture

Posidonia Operations is a DIA implemented in Java. It processes streamed
data from AIS receivers [15, 16]. An AIS receiver is a system that gets vessels
position and meta-data in real time. The encoding protocol of an AIS sentence
can be found in [17].

To get data from an AIS network, a TCP connection to the port AIS receiver
is used. Once an AIS stream is parsed, it is published to a message queue for
further processing: analysis, complex event processing, data integration, visual-
ization, etc. An AIS message is a binary encoded sentence that can be decoded
into key-value objects. Its size is usually under 100 bytes. Velocity and volume
of data depends on the number of parallel AIS streams to be processed.

The core components of interest for performance analysis are: (i) a stream-
ing processor, or AIS parser, that collects the data from the AIS receiver and
parses it; an AIS parser consists of four sub-components: the Parser, the Station-
Manager, the StationProcessors and the ParsingTask; (ii) a message queue for
subscribing/publishing data such as AIS messages or detected events; and (iii) a
complex event processing engine that subscribes to AIS messages and correlates
them in time and space to identify events.

The AIS parser’s behaviour is modelled by the UML activity diagram of
Figure 2, where the stream of messages from the AIS receiver is initially parsed by
the Parser sub-component. Then, messages are adapted by the Station Processor
to convert them into business objects (AIS Sentences) and are successively post-
processed by the Parsing Task to be published in the Rabbit message queue. The
adaptation and post-processing steps are controlled by the Station Manager.

Stream
Parsing

Control Adapting

Adapting Post-processing

AIS Sentence
Published

Parser

Station Manager

Station Processor Parsing Task

Fig. 2: AIS parser scenario from Posidonia Operations

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 162

Posidonia Operations is a commercial product already deployed and oper-
ated in several port authorities. Being a product already in production, perfor-
mance has to be guaranteed under different velocity and volume of data to be
processed. For a single area of a port, a velocity of about hundred AIS mes-
sages per second with a volume of about five million messages per day can be
observed. These numbers may vary and can be multiplied by the number of port
areas managed by the product for a given Port Authority. For example, several
instances of the complex event processing engine would be needed, one for each
port area. In this case, one of the challenges is related to the scalability of the
product in terms of data processing, storage and analysis.

4 The DICE Simulation Tool in action

This section illustrates the DICE capabilities for modeling DIA. First, we illus-
trate how we model the DIA using UML and the aforementioned DICE profile.
This model will provide the basis to carry out the performance assessment. Sec-
ond, we describe what the DICE Simulation Tool looks like when performing
the analysis of the DIA of interest.

4.1 Modeling background

Performance evaluation is traditionally carried out using scenarios, i.e., typical
system paths of usage that specify the system behavior of the DIA. With UML,
we can specify a scenario by using behavioral diagrams, such as sequence or
activity ones. In particular, the latter are directed graphs that express causal
dependencies between computation steps and/or data. As a running example,
we will use the activity diagram (AD) of the AIS Parser in Figure 2.

In order to get a formal model suitable for performance analysis, we need to
enrich the AD with workload characterization and timing specification – such
as the durations of computation steps. To that end, we apply the DICE profile,
that enables the designer to specify performance characteristics through UML
extensions, i.e., stereotypes and tagged values. For quality assessment, the DICE
profile indeed relies on two already existing UML profiles, namely the standard
MARTE profile (Modeling and Analysis of Real-time and Embedded Systems) [5]
and the DAM profile (Dependability Analysis and Modeling) [18]. The MARTE
profile will enable DICE to assess performance, while the DAM profile is its
counterpart for enabling dependability assessment.

Figure 3 shows the AD of the AIS Parser enriched with extensions imported
by the DICE profile from MARTE. In particular, the initial node Stream is
stereotyped with GaWorkloadEvent to specify the open workload, i.e., the mean
arrival rate of messages. Actions are stereotyped using GaStep and a mean du-
ration (i.e., the hostDemand tagged value) is associated to each one.

The AD is complemented with a deployment diagram (DD), that models the
mapping of the logical resources onto processing nodes: Figure 4 shows the DD of
the running example, where the AIS Parser is stereotyped PaLogicalResource to

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 163

ParsingScenario(AD)

AIS Parser

Parser

«GaStep»

parsing

hostDemand=

(value=$parse,

unit=ms,

statQ=mean,

source=assm)

StationManager

«GaStep»

control-adapting

hostDemand=

(value=$control,

unit=ms,

statQ=mean,

source=assm)

StationProcessors

«GaStep»

adapting

hostDemand=

(value=$adapt,

unit=ms,

statQ=mean,

source=assm)

ParsingTask

«GaStep»

post-processing

hostDemand=

(value=$postprocess,

unit=ms,

statQ=mean,

source=assm)

 Stream
«GaWorkloadEvent»

open=

(arrivalRate=

(value=$arrival,

unit=1/ms,

statQ=mean,

source=assm))

ais_sentence_published

Fig. 3: AIS parser scenario with performance stereotypes

specify the number of concurrent threads (poolSize tagged value). All the tagged
values are input parameters, i.e., variables prefixed by the dollar symbol. The use
of variables is a feature, provided by the MARTE profile, that the DICE profile
heavily exploits. As we will see in Section 4.2, such variables can be instantiated
at a later stage.

From the AD of Figure 3, a Generalized Stochastic Petri Net (GSPN) model
can be obtained by following the transformation approach proposed in previous
work [19]. Based on this proposal, the Simulation Tool produces the GSPN of
Figure 5. The transformation also considers the (logical) resource restriction
from the DD of Figure 4. In particular, the initial and final nodes of the AD are
mapped to GSPN transitions, i.e., t1 (timed) and t9 (immediate) respectively.
Each GaStep action of the AD corresponds to a timed transition in the GSPN
model, while the fork and join nodes are translated to immediate transitions, i.e.,

198.51.100.1

«artifact»

MessageQueue

«artifact»

«PaLogicalResource»

AIS Parser

«artifact»

ParsingTask
«artifact»

Parser

«artifact»

StationManager

«artifact»

StationProcessors

poolSize=(value=$parsers)

Fig. 4: Stereotyped Posidonia Operations deployment diagram

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 164

t1

T (t1) = 1/$arrival

t2 t3

T (t3) = $parse

AIS Parser

M0 = $parsers

t4

t6

T (t6) = $adapt t7

T (t7) = $postprocess

t5

T (t5) = $control
t8 t9

Fig. 5: Generated Petri net

t4 and t8 respectively. The firing times of the timed transitions are exponentially
distributed random variables, where the mean parameter T (ti) is derived from
the tagged value associated to the mapped AD initial node or action. Finally, the
AIS Parser in the DD is mapped onto the corresponding GSPN place, where the
initial marking (M0) is set to the poolSize tagged value associated to the logical
resource.

4.2 Using the DICE Simulation Tool

This section shows what the Simulation Tool looks like from the users’ point
of view. UML models, as already mentioned in Section 2, are defined using the
Papyrus UML modeling tool. Figure 6, which depicts the scenario for the AIS
parser activity diagram, shows part of the Papyrus modeling perspective. The
Model Editor, shown at the top, is used to build models by dragging and dropping
UML elements into the editor canvas. The Properties view, shown at the bottom,
is complementary to the Model Editor and is used to apply profiles, stereotypes
and to specify tagged values.

As it can be seen in the figure, the selected element in the editor is the
initial node, and thus, the Properties view shows its properties. In particular,
the bottom view shows that the node has the GaWorkloadEvent stereotype,
and the value of the pattern tagged value (see bottom right of Figure 6) is
(open=(arrivalRate=(value=$arrival, unit=1/ms, statQ=mean, source=
assm)))4. It is noteworthy the use of the variable $arrival in this expression
to specify the actual value of arrivalRate.

Once the modeling stage is complete and the QA Engineer has introduced all
the performance information needed, he/she can launch an assessment process
using Simulation Configuration UI shown in in Fig. 7.

4 Tagged values are specified in Papyrus-MARTE using the so-called Value Specifica-
tion Language. Details on this language can be found in the MARTE Standard [5].

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 165

Fig. 6: Papyrus model editor with the AIS parser activity diagram

The topmost configurable element visible in this UI is the Model to be anal-
ysed. It is the basic input information, and when an input model is selected,
the Variables table is populated with the appropriate entries. This table allows
instantiating the values of the variables found in the tagged values of the applied
stereotypes. Once the simulation has been fully configured, it can be launched
by clicking Run. From this point, all the subsequent steps are automatically
executed until the results are obtained from the underlying analysis tool (i.e.,
GreatSPN).

Figure 8 shows the Simulation properties dialog within the Debug perspective.
The Debug perspective allows controlling the simulation process (e.g., tracking
its state or killing the process), while the Simulation properties window shows
simulation-related information such as identifier, execution time, and – once the
simulation has finished – the analysis results, e.g., the throughputs of the compu-
tation steps. These results are the basic information used to build the Assesment
of Performance Requirements report in terms of the concepts defined in the ini-
tial UML model.

5 Conclusions

In this document, we have presented the Simulation Tool of the DICE Frame-
work. The tool is currently able to provide an initial assessment of performance
requirements of a DIA from an initial UML model. Using the Posidonia Op-

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 166

Fig. 7: Simulation Configuration UI from the DICE Simulation tool

Fig. 8: Results UI from the DICE Simulation tool

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 167

erations case study – a real-world scenario brought from one of our industrial
partners – we have illustrated the Simulation Tool capabilities. At its current
state, the prototype provides a user-friendly interface and covers all the steps of
the DICE simulation workflow with full integration within the DICE-IDE. The
DICE Simulation Tool has been released as an open source tool in the project
website [20], and can be seen in action in http://tiny.cc/z1qzay.

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 re-
search and innovation framework programme under grant agreement No. 644869
(DICE), the Spanish Government (Ministerio de Economía y Competitividad)
under project No. TIN2013-46238-C4-1-R and the Aragonese Goverment Ref.
T27 – DIStributed COmputation (DISCO) research group. We also thank Marc
Gil for his valuable contribution in the integration of the DICE Simulation Tool
within the DICE-IDE.

References

1. Casale, G., et al.: DICE: Quality-driven Development of Data-intensive Cloud Ap-
plications. In: Proceedings of the Seventh International Workshop on Modeling in
Software Engineering. pp. 78–83. IEEE Press, NJ, USA (2015)

2. The DICE Consortium: DICE Platform (2016), url: https://github.com/
dice-project/DICE-Platform

3. The Eclipse Foundation: Website (2016), url: http://www.eclipse.org/
4. The Eclipse Foundation: A slide-ware tutorial on Papyrus usage for starters

(2010), url: https://eclipse.org/papyrus/usersTutorials/resources/
TutorialOnPapyrusUSE_d20101001.pdf

5. OMG: UML Profile for MARTE: Modeling and Analysis of Real-time Embedded
Systems, Version 1.1 (Juny 2011)

6. McAffer, J., VanderLei, P., Archer, S.: OSGi and Equinox: Creating Highly Mod-
ular Java Systems. Eclipse series, Addison-Wesley (2009), http://books.google.
com/books?id=RjX8PQAACAAJ

7. ISO: Systems and software engineering – High-level Petri nets – Part 2: Transfer
format. ISO/IEC 15909-2:2011, Geneva, Switzerland (2008)

8. Dipartimento di informatica, Università di Torino: GRaphical Editor and Ana-
lyzer for Timed and Stochastic Petri Nets (2016), url: http://www.di.unito.it/
~greatspn/index.html

9. The Eclipse Foundation: Eclipse QVT Operational (2016), url: http://www.
eclipse.org/mmt/qvto

10. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Version 1.1 (January 2011), url: http://www.omg.org/spec/QVT/1.1/

11. OMG: Object Management Group website (2016), url: http://www.omg.org/
12. The Eclipse Foundation & Obeo: Acceleo (2016), url: https://eclipse.org/

acceleo/
13. OMG: MOF Model to Text Transformation Language (MOFM2T), 1.0 (Jan 2008),

url: http://www.omg.org/spec/MOFM2T/1.0/

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 168

14. Joubert, C., Montesinos, M., Sanz, J.: A comprehensive port operations man-
agement system. ERCIM News 2014(97) (2014), http://ercim-news.ercim.eu/
en97/special/a-comprehensive-port-operations-management-system

15. Automatic Identification System - Encoding Guide (2012), http://www.uscg.mil/
hq/cg5/TVNCOE/Documents/links/AIS.EncodingGuide.pdf, accessed 04/29/2016.

16. Installation and Quick Reference Guide - SRL-200/G AIS Receiver, http://
www.comarsystems.com/brochures/Installation%20SLR200G%20Guide%20.pdf,
accessed 04/29/2016.

17. AIVDM/AIVDO protocol decoding (2015), http://catb.org/gpsd/AIVDM.html,
accessed 04/29/2016.

18. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling and analysis of
software systems specified with uml. ACM Comput. Surv. 45(1), 1–48 (Dec 2012)

19. López-Grao, J.P., Merseguer, J., Campos, J.: From UML Activity Diagrams to
Stochastic Petri Nets: Application to Software Performance Engineering. SIGSOFT
Softw. Eng. Notes 29(1), 25–36 (Jan 2004)

20. The DICE Consortium: DICE Simulation Repository (2016), url: https://
github.com/dice-project/DICE-Simulation

Actas de las XXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016) 169

	Actas de las XXXIV Jornadas de Concurrencia y Sistemas Distribuidos (JCSD 2016)
	Créditos
	Prólogo
	Cómites y Entidades Colaboradoras
	Índice
	Conferencia invitada: A testbed for research and experimentation on protocols, applications and devices for 5G networks.

Pedro Merino

Universidad de Málaga

	Enforcing PPF Privacy Policies in Social Network Services.

Raúl Pardo, Gerardo Schneider

Chalmers, University of Gothenburg, Sweden

	Uso de Composiciones Paralelas de Alto Nivel para la solución del ensamble de secuencias de ADN.

Mario Rossainz-López, Manuel I. Capel, Roberto Hernández-Munive,

Iván Olmos-Pineda, José A. Olvera

Benemérita Universidad Autónoma de Puebla, México - Universidad de Granada

	DaaS (Device as a Service): Un Paradigma de abstracción de dispositivos basados en servicios aplicado a sistemas domóticos.

Raúl Barragán-Gil, José M. Gutiérrez-Guerrero, Juan A. Holgado-Terriza

Universidad de Granada

	Sistema de control de entorno distribuido y universalmente accesible.

José Antonio Lozano Pardo, Borja Molina Zea, Alberto Ogabán Peinado,

Mª José Rodríguez Fórtiz, Miguel J. Hornos

Universidad de Granada

	LTE para IoT.
Almudena Díaz-Zayas, F. Javier Rivas-Tocado, Pedro Merino
Universidad de Málaga

	Wireless Sensor Networks for Bird Tracking.
Unai Burgos, Borja Gamecho, Luis Gardeazabal, Carlos Gómez-Calzado,
Alberto Lafuente
Universidad del País Vasco - Wimbi Technologies, Donostia

	Redes de Sensores I2C Inteligentes.
José M. Gutiérrez-Guerrero, Juan A. Holgado-Terriza, Jesús L. Muros-Cobos, Gonzalo Pomboza-Junes
Universidad de Granada - National University of Chimborazo, Ecuador

	Reliable Publish/Subscribe in Dynamic Systems.
Ugaitz Amozarrain, Mikel Larrea
Universidad del País Vasco

	Modeling Sensor Networks as Context-Aware Web Services Using the Publish/Subscribe Paradigm.

Valentín Valero, Gregorio Díaz, María Emilia Cambronero, Hermenegilda Macià

Universidad de Castilla-La Mancha, Albacete

	Supporting Service Availability in Mobile Cloud Computing: An overview.

Gabriel Guerrero-Contreras, Sara Balderas-Díaz, Carlos Rodríguez-Domínguez, José Luis Garrido

Universidad de Granada

	NodIO: Marco de desarrollo de aplicaciones para computación evolutiva voluntaria.
Israel Blancas, J. J. Merelo, Antonio Álvarez
Universidad de Granada

	Un Modelo Paralelo de Simulación de Crecimiento Tumoral con Autómatas Celulares.

Antonio Tomeu, Alberto Salguero, Manuel Capel

Universidad de Cádiz - Universidad de Granada

	Hacia el desarrollo de aplicaciones Web colaborativas utilizando nuevos estándares y tecnologías: El caso de estudio de VIRTRA-EL.

Carlos Rodríguez Domínguez, Francisco Carranza, José Luis Garrido,

Gabriel Guerrero

Universidad de Granada

	A Tool for Assessing Performance Requirements of Data-Intensive Applications.
Abel Gómez, Christophe Joubert, José Merseguer
Universidad de Zaragoza - Prodevelop SL

	PTTAC: Passive Testing Tool for Asynhronous Systems.

Azahara Camacho, Mercedes G. Merayo, Inmaculada Medina-Bulo

Universidad Complutense de Madrid - Universidad de Cádiz

	Implementing a Hy-tccp interpreter for simulation.

María del Mar Gallardo, Leticia Lavado, Laura Panizo

Universidad de Málaga

	Acuerdo Distribuido en Sistemas Dinámicos.

Carlos Gómez-Calzado, Alberto Lafuente, Mikel Larrea

Universidad del País Vasco

	Icarus: Replicación de aplicaciones sobre Paxos.

Luis Villazón Esteban, José Manuel Bernabeu Aubán

Universidad del País Vasco - Universidad Politécnica de Valencia

	Replica Divergence in Data-Centric Consistency Models.

Leticia Pascual-Miret, Francesc D. Muñoz-Escoí

Universidad Politécnica de Valencia

	Haciendo "Tracking" sobre computaciones de programas CSP.

Marisa Llorens, Javier Oliver, Josep Silva, Salvador Tamarit

Universidad Politécnica de Valencia

	A formal approach to automatic analysis of extra-functional properties in mobile apps.

Ana Rosario Espada, María del Mar Gallardo, Alberto Salmerón, Pedro Merino

Universidad de Málaga

	Índice de autores

