
MORPHEUS: a supporting tool for MDD

Elena Navarro1 & Abel Gómez2 & Patricio Letelier2 & Isidro Ramos2

1 Department of Computing Systems, University of Castilla-La Mancha, Spain.

Elena.Navarro@uclm.es

2 Dep. of Information Systems and Computation, Polytechnic University of Valencia, Spain.

{agomez, letelier, iramos}@dsic.upv.es

Abstract: Model-Driven Development (MDD) approach is gaining more and

more attention both from practitioners and academics because its positive

influences in terms of reliability and productivity in the software development

process. ATRIUM is one of the current proposals following the MDD principles

as the development is driven by models and a tool, MORPHEUS, support both its

activities and models. This tool provides facilities for modelling, meta-modelling,

and analysis and integrates an engine to execute transformations. In this work, this

tool is presented describing both its architecture and its capabilities.

Keywords: Model-Driven Development, Requirements Engineering, Software

Architecture

1. Introduction

Software development process is always a challenging activity, especially because

systems are becoming more and more complex. In this context, the Model-Driven

Development [24] (MDD) approach is gaining more and more attention from

practitioners and academics. This approach promotes the exploitation of models at

different abstraction levels, guiding the development process by means of

transformations, so that traceability and automatic support becomes a reality.

MDD has demonstrated positive influences for reliability and productivity of the

software development process due to several reasons [24]: it allows one to focus

on the ideas and not on the supporting technology; it facilitates not only the

analysts get an improved comprehension of the problem to be solved but also the

stakeholders obtain a better cooperation during the software development; etc.

With those aims, MDD exploits models both to properly document the system and

automatically or semi-automatically generate the final system. This is why the

software development is shifting its attention [1] from “everything is an object”,

so trendy in the eighties and nineties, to “everything is a model.”

ATRIUM [12][15] (Architecture generaTed from RequIrements applying a

Unified Methodology) has been defined following the MDD principles, as models

2 Elena Navarro & Abel Gómez & Patricio Letelier & Isidro Ramos

drive its application, and the tool MORPHEUS (see [13] for demos) has been built

to support its models and activities. This methodology has been defined to guide

the concurrent definition of requirements and software architecture, paying special

attention to the traceability between them. In this context, the support of

MORPHEUS is a valuable asset allowing the definition of the different models;

maintaining traceability among them; supporting the necessary transformation,

etc. This paper focuses on MORPHEUS and its support to a MDD process.

This paper is structured as follows. After this introduction, a brief description

of ATRIUM is presented in section 2. Section 3 describes the supporting tool of

ATRIUM, MORPHEUS. Related works are described in section 4. Finally,

section 5 ends this paper by presenting the conclusions and further works.

2. ATRIUM at a glance

ATRIUM provides the analyst with guidance, along an iterative process, from an

initial set of user/system needs until the instantiation of the proto-architecture.

ATRIUM entails three activities to be iterated over in order to define and refine

different models and allow the analyst to reason about partial views of both

requirements and architecture. Fig. 1 shows, using SPEM [21] (Software Process

Engineering Metamodel), the ATRIUM activities that are described as follows:

 Modelling Requirements. This activity allows the analyst to identify and
specify the requirements of the system-to-be by using the ATRIUM Goal
Model [18], which is based on KAOS [5] (Knowledge Acquisition in
autOmated Specification) and the NFR (Non-Functional Requirements)
Framework [2]. This activity uses as input both an informal description of
the requirements stated by the stakeholders, and the CD 25010.2 Software
product Quality Requirements and Evaluation Quality model (SQuaRE [9]).
The latter is used as framework of concerns for the system-to-be. In addition,
the architectural style to be applied is selected during this activity [15].

Modelling
Requirements

ATRIUM Goal
Model

Modeling
Scenarios

Synthesize and
Transform

proto-
architecture

Scenario
Model

ISO/IEC
25010

Selected
Architectural Style

Patterns

Transformation
rules

Informal
Requirements

Fig. 1. An outline of ATRIUM

MORPHEUS: a supporting tool for MDD 3

 Modelling Scenarios. This activity focuses on the specification of the
ATRIUM Scenario Model, that is, the set of Architectural Scenarios that
describe the system’s behaviour under certain operationalization decisions
[16]. Each ATRIUM Scenario identifies the architectural and environmental
elements that interact to satisfy specific requirements and their level of
responsibility.

 Synthesize and Transform. This activity has been defined to generate the
proto-architecture of the specific system [14]. It synthesizes the architectural
elements from the ATRIUM scenario model that build up the system-to-be,
along with its structure. This proto-architecture is a first draft of the final
description of the system that can be refined in a later stage of the software
development process. This activity has been defined by applying Model-To-
Model Transformation (M2M, [4]) techniques, specifically, using the QVT
Relations language [20] to define the necessary transformations. It must be
pointed out that ATRIUM is independent of the architectural metamodel
used to describe the proto-architecture, because the analyst only has to
describe the needed transformations to instantiate the architectural
metamodel he/she deems appropriate. Currently, the transformations [15] to
generate the proto-architecture, instantiating the PRISMA architectural
model [22], have been defined. PRISMA was selected because a code
compiler exists for this model.

ATRIUM has been validated in the context of the tele-operated systems.

Specifically, the EFTCoR [8] project has been used for validation purposes. The

main concern of this project was the development of a tele-operated platform for

non-pollutant hull ship maintenance operations whose main structure is shown in

Fig. 2. In this paper, we are going to use the specification made of the Robotic

Device Control Unit (RDCU) to show how MORPHEUS provides support to each

activity of ATRIUM. The RDCU is in charge of commanding and controlling in a

coordinated way the positioning of devices along with the tools attached to them.

3. MORPHEUS: a MDD supporting tool

The main idea behind MORPHEUS is to facilitate a graphical environment for the

description of the three models used by ATRIUM (Goal Model, Scenarios Model,

and PRISMA Model) in order to provide the analysts with an improved legibility

Fig. 2. Describing the EFTCoR platform

4 Elena Navarro & Abel Gómez & Patricio Letelier & Isidro Ramos

and comprehension. Several alternatives were evaluated such as the definition of

profiles, or the use of meta-modelling tools. Eventually, we developed our own

tool in order to provide the proper integration and traceability between the models.

Fig. 3 shows the main elements of MORPHEUS. The Back-End layer allows

the analyst to access to the different environments, and to manage the projects

he/she creates. Beneath this layer, the different environments of MORPHEUS are

shown, providing each one of them support to a different activity of ATRIUM.

The RepositoryManager layer is in charge of providing the different environments

with access to the repository where the different models and metamodels are

stored. In addition, each one of the graphical environments (Requirements Model

Editor, Scenario Editor, and Architecture Model Editor) exploits Microsoft Office

Visio Drawing Control 2003 [25] (VisioOCX in Fig. 4, Fig. 9, Fig. 13) for

graphical support. This control was selected to support the graphical modelling

needs of MORPHEUS because it allows a straightforward management, both for

using and modifying shapes. This feature is highly relevant for our purposes

because all the kinds of concepts that are included in our metamodels can easily

have different shapes, facilitating the legibility of the models. In addition, the user

is provided with all the functionalities that Visio has, that is, she/he can manage

different diagrams to properly organize the specification, make zoom to see more

clearly details, print the active diagram, etc. In the following sections, each one of

the identified environments is described.

Back-End

Requirements
Environment

Scenarios
Environment

Software
Architecture
Environment

Repository Manager

Fig. 3. Main architecture of MORPHEUS

1.1 Requirement Environment

As described in section 2, Modelling Requirements is the first activity of

ATRIUM. In order to support this activity, the Requirements Environment was

developed. From the very beginning of the EFTCoR project, one of the main

problem we faced was how the requirements metamodel had to change to be

adapted to the specific needs of the project. With this aim, this environment was

developed with two different work contexts. The first context is the Requirements

Metamodel Editor (RMME), shown in Fig. 4, which provides users with facilities

for describing requirement meta-models customized according to project’s

semantic needs (see Fig. 5). The second context is the Requirements Model Editor

MORPHEUS: a supporting tool for MDD 5

(RME), also shown in Fig. 4, which automatically offers the user facilities to

graphically specify models according to the active metamodel (see Fig. 8). These

facilities are very useful to exploit MORPHEUS to support other proposals.

Fig. 5. Meta-Modelling work context (RMME) of the MORPHEUS Requirements Environment

It can be observed in Fig. 5 that the RMME allows the user to describe new

meta-elements by extending the core metamodel described in Fig. 6, that is, new

types of artefacts, dependencies, and refinements. This metamodel was identified

and evaluated its applicability by analysing the existing proposals in requirements

engineering [18]. For instance, Fig. 5 shows that the two meta-artifacts (goal,

requirement) of the ATRIUM Goal Model were defined using the RMME. In

order to fully describe the new meta-elements, the user can describe their meta-

attributes and the OCL constraints he/she needs to check any property he/she

deems appropriate. Fig. 7 shows how the meta-artifact goal was defined by

Requirements

ModelEditor

Requirements

MetamodelEditor

EventsHandler

AnalysisManager

OCLvalidator

MOFManagerVisioOCX

Fig. 4. Main elements of the Requirements Environment

-name : string

-description : string

Artifact
Dependency Refinement

-depTo 0..1

-to1

-depFrom0..1

-from

1

-root 1
-refRoot0..1

-leafArtifact1

-leaves

0..* Leaf

-refLeaf1

-leaves

1..*

Fig. 6. Core-metamodel for the requirements environment

6 Elena Navarro & Abel Gómez & Patricio Letelier & Isidro Ramos

extending artifact; describing its meta-attributes priority, author, stakeholder, etc;

and specifying two constraints to determine that the meta-attributes stakeholder

and author cannot be null.

Fig. 7. Describing a new meta-artifact in MORPHEUS

It is worth noting that automatic support is provided by the environment for the

evolution of the model, that is, as the metamodel is modified, the model is updated

in an automatic way to support those changes, asking the user to confirm the

necessary actions whenever a delete operation is performed on meta-elements or

meta-atributes. This characteristic is quite helpful because the requirement model

can be evolved as the expressiveness needs of the project do.

Fig. 8. Modelling work context (RME) of the MORPHEUS Requirements Environment

MORPHEUS: a supporting tool for MDD 7

Once the metamodel has been defined the user can exploit it in the modelling

context, RME, shown in Fig. 8. It uses VisioOCX to provide graphical support, as

Fig. 4 shows, and has been structured in three main areas. On the right side, the

stencils allow the user to gain access to the active metamodel. Only by dragging

and dropping these meta-elements on the drawing surface in the centre of the

environment, the user can specify the requirements model. He/she can modify or

delete these elements by clicking just as usual in other graphical environments.

For instance, some of the identified goals and requirements of the EFTCOR are

described in the centre of the Fig. 8. On the left side of the RME, a browser allows

the analyst to navigate throughout the model and modify it. As Fig. 4 illustrates,

the EventHandler is in charge of manipulating the different events that arise when

the user is working on the RME.

In addition, as Fig. 4 illustrates, the RME uses two components to provide

support to OCL: OCLvalidator and MOFManager. The former is an engine to

check OCL constraints that was integrated in MORPHEUS. The later was

developed to allow us to manipulate metamodels and models in MOF [19] format.

By exploiting these components the constraints defined at the metamodel can be

automatically checked. For instance, when the active diagram was checked, two

inconsistencies were found that are shown at the bottom of the Fig. 8.

 However, the support of the tool would be quite limited if it only provides

graphical notation. For this reason, the Analysis Manager, shown in Fig. 4, has

been developed to allow the user to describe and apply those rules necessary to

analyse its models. These rules are defined by describing how the meta-attributes

of the meta-artifacts are going to be valuated depending on the meta-atributes of

the meta-artifacts they are related to by means of which meta-relationships. Once

these rules are defined, the Analysis Manager exploits them by propagating the

values from the leaves to the roots of the model [17]. This feature can be used for

several issues such as, satisfaction propagation [17], change propagation, or

analysis of architectural alternatives [15].

1.2 Scenario Environment

As presented in section 2, Modelling Scenarios is the next activity of ATRIUM.

This activity is in charge of describing the scenario model. This model is

exploited to realize the established requirements in the goal model by describing

SynthesisProcessor

ScenarioEditor

EventsHandler

VisioOCX MediniQVT

Fig. 9. Main elements of the Scenario Environment

8 Elena Navarro & Abel Gómez & Patricio Letelier & Isidro Ramos

partial views of the architecture, where only shallow-components, shallow-

connectors and shallow-systems are described. In order to describe these

scenarios, an extension of the UML2 Sequence Diagram has been carried out to

provide the necessary expressiveness for modelling these architectural elements

[15]. In order to provide support to this activity the Scenario Editor (SME), shown

in Fig. 10, was developed. The ScenariosEditor uses the VisioOCX to provide the

user with graphical support for modelling the Scenario Model. The EventHandler

is in charge of managing all the events trigged by user actions. Fig. 10 illustrates

how the SME has been designed. In a similar way to the RMME described in the

previous section, it has been structured in three main areas. The Model Explorer,

on the right, facilitates the navigation through the Scenario Model being defined in

an easy an intuitive way and manages (creation, modification and deletion) the

defined scenarios. It is pre-loaded with part of the information of the requirements

model being defined. For this reason, the selected operationalizations, catalogued

by their dimensions, are displayed. It facilitates to maintain the traceability

between the Goal Model and the Scenario Model. Associated to each

operationalization one or several scenarios can be specified to describe how the

shallow architectural elements collaborate to realize that operationalization. In the

middle of the environment is situated the Graphical View where the elements of

the scenarios can be graphically specified. In this case, Fig. 10 depicts the scenario

“OpenTool” that is realizing one of the operationalizations of the goal model. It

can be observed how several architectural and environmental elements are

collaborating by means of a sequence of messages. On the right side it can be seen

the Stencil that makes available the different shapes to graphically describe the

ATRIUM scenarios. The user only has to drag and drop on the Graphical View the

necessary shapes. In addition, below the stencil a control allows the user to

introduce the necessary properties for each element being defined.

Another component of the Scenario Environment is the Synthesis processor

(see Fig. 11). It provides support to the third activity of ATRIUM Synthesis and

Transform which is in charge of the generation of the proto-architecture. For its

Fig. 10. What the Scenario Editor (SME) looks like

MORPHEUS: a supporting tool for MDD 9

development, the alternative selected was the integration of one of the existing

M2M transformation engines considering that it has to provide support to the

QVT-Relations language. Specifically, a custom tool based in the medini QVT

[11] transformation engine (licensed under the Eclipse Public License) was

integrated as Fig. 11 illustrates. It accepts as inputs the metamodels and their

corresponding models in XMI format to perform the transformation. This engine

is invoked by the Synthesis processor which proceeds in several steps. First, it

stores the Scenario Model being defined in XMI. Second, it provides the user with

a graphical control to select the destination target architectural model, the QVT

transformation to be used and the name of the proto-architecture to be generated.

By default, PRISMA is the selected target architectural model because the QVT

rules [15] for its generation have been defined. However, the user can define its

own rules and architectural metamodels to synthesize the Scenario Model. Finally,

the Synthesis processor performs the transformation by invoking the QVT engine.

The result is an XMI file describing the proto-architecture.

Fig. 11. Describing the Synthesis processor

1.3 Software Architecture Environment

As can be observed, both the Requirements Environment and the Scenario

Environment provide support to the three activities of ATRIUM. However, as

specified in section 2, a proto-architecture is obtained at the end of its application.

This proto-architecture should be refined in a latter stage of development to

provide a whole description of the system-to-be. With this aim the Software

Architecture Environment [23] was developed. It makes available a whole

graphical environment for the PRISMA Architecture Description Language [22]

so that the proto-architecture obtained from the scenarios model can be refined.

As Fig. 13 depicts, this environment integrates VisioOCX for graphical support

in a similar way to the previous ones. The Architectural Model Editor is the

component that provides the graphical support, whose appearance can be seen in

Fig. 12. It has three main areas: the stencil on the right where the PRISMA

concepts are available to the user, the graphical view in the centre where the

different architectural elements are described; and the model explorer on the right.

It is worthy of note that this browser is structured in two levels following the

10 Elena Navarro & Abel Gómez & Patricio Letelier & Isidro Ramos

recommendation of the ADL [23]: definition level, where the PRISMA types are

defined; and configuration level where the software architecture is configured.

As this environment should allow the user to refine the proto-architecture

obtained from the synthesis of the scenario model, it provides her/him with

facilities to load the generated proto-architecture if PRISMA was the selected

target architectural model. In addition, it also provides an add-in that facilitates the

generation of a textual PRISMA specification, which can be used to generate C#

code by using the PRISMA framework.

Fig. 12. What Architectural Editor looks like

4. Related works

Nowadays, MDD is an approach that is gaining more and more followers in the

software development area, and lots of tools that support this trend have arisen.

Nevertheless, none of the existing solutions can completely cover the capabilities

of the MORPHEUS tool.

The Eclipse Modeling Framework (EMF) has become one of the most used

frameworks to develop model-based applications. EMF provides a metamodelling

language, called Ecore, that can be seen as an implementation of the Essential

MOF language. Around EMF lots of related projects have grown that complement

its modelling and metamodelling capabilities, such as OCL interpreters, model

Architecture

ModelEditor

EventsHandler

VisioOCX

PRISMA Processor

Fig. 13. Main elements of the Software Architecture Environment

MORPHEUS: a supporting tool for MDD 11

transformation engines, or even tools able to automatically generate graphical

editors, such as Graphical Modeling Framework (GMF [7]). The advantages are

twofold: first they are usually quite mature tools, and second it is easy to

interoperate with them by means of the XMI format. That is why the MORPHEUS

tool has the MOFManager component: it allows us to reuse these tools as is the

case of the OCL checker and the model transformations engine. Nevertheless, a

solution completely based in EMF has also some important drawbacks. The main

one is that, although it is not mandatory, this framework and its associated tools

are fundamentally designed to deal with static models that do not change at run

time. This factor makes frameworks like GMF completely useless for our

purposes, because in MORPHEUS the requirements metamodel is populated with

instances during its evolution and it is necessary to be able to synchronize them.

Other analyzed alternatives are the MS DSL Tools [3]. MS DSL tools are a

powerful workbench that also provides modelling and metamodelling capabilities

to automatically generate both code and graphical editors in Visual Studio.

However, it exhibits the same weakness than the previous solution: it is basically

designed to deal with models that do not evolve during time, so that, these models

can only be modified during design time and not at run time. Moreover, it lacks of

the wide community that provides complementary tools to deal, check and analyze

models, in comparison with the solution that is completely based on EMF. This

disadvantage is also present in other tools, like the ones associated to Meta-CASE

and Domain Specific Modelling techniques, such as MetaEdit+ [10].

5. Conclusions and further works

In this work a tool called MORPHEUS has been presented paying special

attention to how it provides support to a MDD process, ATRIUM. It has been

shown how each model can be described by using this tool and, specially, how

traceability throughout its application is properly maintained. It is also worth

noting the meta-modelling capabilities it has, providing automatic support to

evolve the model as the metamodel is changed. The integration of an OCL checker

is also interesting as it allows the user to evaluate the model using the properties

he/she deems appropriate.

Several works constitute our future challenges. Although the tool is quite

mature, we are considering the development of other functionalities, as for

instance, a model checker of the software architecture or a report generator for the

requirements environment. It is also among our priorities to deploy the tool in the

next future as an open source project to be evaluated and used by the community.

Acknowledgments. This work is funded by the Dept. of Science and Technology (Spain)

I+D+I, META project TIN2006-15175-C05-01 and by the UCLM, project MDDRehab

TC20091111. This work is also supported by the FPU fellowship program from the Spanish

government AP2006-00690.

12 Elena Navarro & Abel Gómez & Patricio Letelier & Isidro Ramos

References

1. Bézivin, J. (2004). In search of a basic principle for model driven engineering, Upgrade

5(2), pp. 21–24, 2004

2. Chung, L., Nixon, B. A., Yu, E., Mylopoulos J. (2000). Non-Functional Requirements in

Software Engineering, Kluwer Academic Publishing, Boston.

3. Cook, S., Jones, G., Kent, S., Cameron A. (2007) Domain-specific development with Visual

Studio DSL tools, Addison Wesley Professional.

4. Czarnecki K., Helsen S. (2006) Classification of Model Transformation Approaches. IBM

Systems Journal, 45(3), pp. 621-645.

5. Dardenne A., van Lamsweerde A., Fickas S., (1993) Goal-directed Requirements

Acquisition, Science of Computer Programming, 20(1-2), pp. 3-50.

6. Eclipse Modeling Framework. http://www.eclipse.org/emf/

7. Eclipse Graphical Modeling Framework. http://www.eclipse.org/gmf/

8. GROWTH G3RD-CT-00794 (2003) EFTCOR: Environmental Friendly and cost-effective

Technology for Coating Removal. European Project, 5th Framework Prog.

9. ISO/IEC JTC JTC1/SC7 N4098 (2008), Software engineering-Software product Quality

Requirements and Evaluation (SQuaRE) Quality model.

10. Kelly S., Lyytinen K., Rossi M., METAEDIT+ A fully configurable Multi-User and Multi-

tool CASE and CAME Environment. Proc. of 8th International Conference on Advances

Information System Engineering, LNCS1080, Springer-Verlag, 1996, pp. 1-21.

11. Medini QVT, http://projects.ikv.de/qvt.

12. Montero F., Navarro E. (2007), ATRIUM: Software Architecture Driven by Requirements,

Proc. 14th IEEE Int. Conf. on Engineering of Complex Computer Systems (ICECCS'09),

IEEE Press, Jun. 2007, in press.

13. MORPHEUS (2009), http://www.dsi.uclm.es/personal/ElenaNavarro/research_atrium.htm

14. Navarro E., Cuesta C. E. (2008), Automating the Trace of Architectural Design Decisions

and Rationales Using a MDD Approach, Proc. 2nd European Conference Software

Architecture, LNCS 5292, Springer Verlag, Sep. 2008, pp. 114-130.

15. Navarro E. (2007), Architecture Traced from RequIrements applying a Unified Methodology,

PhD thesis, Computing Systems Department, UCLM.

16. Navarro E., Letelier P., Ramos I. (2007), Requirements and Scenarios: playing Aspect

Oriented Software Architectures, Proc. 6th IEEE/IFIP Conf. on Software Architecture, IEEE

Press, 2007, n. 23.

17. Navarro E., Letelier, P., Reolid, D., Ramos, I. (2007), Configurable Satisfiability

Propagation for Goal Models using Dynamic Compilation Techniques, Proc. Information

Systems and Development (ISD’07), Springer US, Sep. 2007, pp. 167-179.

18. Navarro, E., Letelier, P., Mocholí, J.A., Ramos, I. A Metamodeling Approach for

Requirements Specification. Journal of Computer Information Systems, 2006, 47(5): 67-77.

19. OMG (2006). Meta Object Facility (MOF) 2.0 Core Specification (ptc/06-01-01).

20. OMG (2005). Document ptc/05-11-01, QVT, MOF Query/ Views/Transformations.

21. OMG (2005). Software Process Engineering Metamodel (SPEM), ver. 1.1 formal/05-01-06.

22. Pérez, J., Ali, N., Carsí, J. Á., Ramos, I., (2006). Designing Software Architectures with an

Aspect-Oriented Architecture Description Language, Proc. 9th Int. Sym. on Component-

Based Software Engineering (CBSE 2006), Jun. 2006, pp. 123-138, Springer

Berlin/Heidelberg.

23. Pérez, J., Navarro, E., Letelier, P. and Ramos, I. (2006). A Modelling Proposal for Aspect-

Oriented Software Architectures, Proc. 13th Annual IEEE Int. Conf. and Works. on the

Engineering of Computer Based Systems (ECBS'06), IEEE Press, Mar. 2006, pp. 32-41.

24. Selic, B. (2003). The Pragmatics of Model-Driven Development. IEEE Soft. 20(5), pp. 19-25.

25. Visio 2003 (2009), http://msdn.microsoft.com/en-us/library/aa173161(office.11).aspx

