A model-based approach for developing event-driven
architectures with AsyncAPI

Abel Gémez
agomezll@uoc.edu
Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya (UOC)
Barcelona, Spain

Aitor Urbieta
aurbieta@ikerlan.es
Ikerlan Technology Research Centre,
Basque Research and Technology Alliance (BRTA)
Arrasate-Mondragdén, Spain

ABSTRACT

In this Internet of Things (IoT) era, our everyday objects have
evolved into the so-called cyber-physical systems (CPS). The use
and deployment of CPS has especially penetrated the industry,
giving rise to the Industry 4.0 or Industrial IoT (IIoT). Typically, ar-
chitectures in IToT environments are distributed and asynchronous,
communication being guided by events such as the publication of
(and corresponding subscription to) messages.

While these architectures have some clear advantages (such as
scalability and flexibility), they also raise interoperability challenges
among the agents in the network. Indeed, the knowledge about
the message content and its categorization (topics) gets diluted,
leading to consistency problems, potential losses of information
and complex processing requirements on the subscriber side to try
to understand the received messages.

In this paper, we present our proposal relying on AsyncAPI to
automate the design and implementation of these architectures
using model-based techniques for the generation of (part of) event-
driven infrastructures. We have implemented our proposal as an
open-source tool freely available online.

CCS CONCEPTS

« Software and its engineering — Domain specific languages;
Source code generation; Publish-subscribe / event-based ar-
chitectures.

KEYWORDS

publish-subscribe, cyber-physical systems (CPS), event-driven ar-
chitectures, AsyncAPI, Industrial Internet of Things (IIoT)

1 INTRODUCTION

The emergence of the Internet of Things (IoT) [12] has dramati-
cally changed how physical objects are conceived in our society
and industry. In the new era of the IoT, every object becomes a
complex cyber-physical system (CPS) [22], where both the physi-
cal characteristics and the software that manages them are highly
intertwined. Nowadays, many everyday objects are in fact CPSs,

Markel Iglesias-Urkia
miglesias@ikerlan.es
Ikerlan Technology Research Centre,
Basque Research and Technology Alliance (BRTA)
Arrasate-Mondragdn, Spain

Jordi Cabot
jordi.cabot@icrea.cat
ICREA
Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya (UOC)
Barcelona, Spain

which increasingly use sensors and interfaces (APIs) to interact and
exchange data with the cloud [31].

The ideas behind the IoT have been especially embraced by
industry in the so-called Industrial IoT (IIoT) or Industry 4.0 [23].
It is in this Industry 4.0 scenario where CPSs become especially
relevant, mainly in control and monitoring tasks [25].

IIoT has largely contributed to the growing interest in event-
driven architectures [26], best used for asynchronous communi-
cation. Indeed, in order to achieve higher degrees of scalability,
CPSs are typically deployed on event-driven asynchronous archi-
tectures that improve the overall behavior and reliability of sys-
tems. One of the most popular paradigms today is the so-called
publish-subscribe [1] - followed by, for example, the Message Queu-
ing Telemetry Transport (MQTT) protocol — where messages that
are sent to and from a CPS are not directed to a certain recipient,
but are proactively published and consumed by the agents involved
according to certain criteria or categories. However, although these
distributed architectures are especially scalable and tolerant to
changes, they are not problem-free: since communication is done
between equals, there must be an agreement between all parties
on what are the expected message categories, as well as on their
internal format and structure.

This is a key challenge we face at Ikerlan. As a technology center,
Ikerlan currently coordinates different projects developing solutions
to monitor, control and supervise systems of remote IoT devices
in manufacturing plants, consumer goods, warehouses or smart
buildings. Such solutions must support environments where a large
number of devices send and consume data (e.g., sensor information,
batch processed data, etc.). Following the current trend, the solu-
tions developed are based on event-driven architectures following
the publish-subscribe paradigm.

Based on our experience in working on a large number of IoT
projects of different sizes and domains, in this article we present
a model-based proposal to design and develop these architectures
efficiently. Our solution relies on the AsyncAPI Specification [3] to
formalize and (semi)automate the design and implementation of
these architectures. Our proposal is the first model-based solution
for the AsyncAPI Specification, and one of the first fully working

code generators for it as of 2020. We have implemented our proposal
as an open-source tool freely available online.

This paper is structured as follows. Section 2 motivates this work
by introducing a small use case that will be used as a running ex-
ample throughout the rest of the paper; while Section 3 presents
AsyncAPI, which serves as the background for this work. Section 4
presents our proposed workflow for designing and developing
event-driven architectures; and Section 5 presents in detail our pro-
posal, describing all the main artifacts and components involved.
Section 6 presents the related work; Section 7 discusses on our
experience and findings; and, finally, Section 8 concludes the paper.

2 MOTIVATION

Monitoring and control needs, as well as security and reliability
requirements, make possible — and even desirable - to reuse a
generic reference architecture in IIoT environments. Architectures
in these environments are typically event-based, thus allowing a
low coupling among the elements in the architecture. One com-
mon event-based paradigm is the so-called publish-subscribe, where
messages are not directly sent to the recipients who will consume
them, but are published under a certain category called topic. Only
the devices subscribed to a certain topic will receive the messages
published under it.

A common use case of these event-based architectures is IoT
devices publishing monitoring and status data. Such data, whose vol-
ume can be very high, may be consumed by a cloud application that
filters and processes it. On the other hand, control messages may be
sent to reconfigure the IoT devices through a Frontend when needed.
The central element of this architecture would be the message bro-
ker: the element in charge of managing publications, subscriptions,
and the flow of messages between the elements of the network.

Example. To illustrate the architectures explained above, we will
use a simplified use case of a factory with different production lines
from an actual industrial partner of Ikerlan as shown in Figure 1.
The message broker is shown in the center of the figure, and as afore-
mentioned, it is in charge of managing the different publications and
subscriptions. Different production lines, which contain a varying
number of presses, are depicted on the right-hand side of the figure.
IoTBoxes are IoT devices which are distributed throughout the factory,
and are capable of monitoring and controlling different production
lines. In the example, IoTBox 1 controls and monitors Line A (and
thus presses Al and A2), and IoTBox 2 controls and monitors Line B
(and as a consequence, press B1). The IoTBoxes periodically collect
data from the presses in the production line — e.g., pressure values
and temperatures. These data are sent to be further processed in the
cloud. To do this, IoTBox 1 publishes its monitoring information in
topic iotbox/box1/monitor, while IoTBox 2 does the same on topic
iotbox/box2/monitor. To receive the monitoring data, the cloud
is subscribed to topic iotbox/+/monitor — the + symbol acts as a
wildcard — and as a consequence, the cloud receives the monitor-
ing data of both IoTBoxes under topics iotbox/box1/monitor and
iotbox/box2/monitor.

IoTBoxes may also receive configuration commands — for example,
to change the monitoring frequency. These configuration commands
can be issued remotely via the frontend. For example, the frontend
may publish the desired monitoring frequency for Line A — which is

Line A

iotbox/box1/monitor \otbox/boxwmomtor

\otbox/b0x2/m0ﬂnor Press A1
hvd
loul
C oud \otbox/bochoﬂﬂg |0TB0X 1 Press A2
|01b0x/bo><2/momtor
M Line B
iotbox/box1 /conﬂg essage —
Frontend [otbovbox2/config Broker . [ison] [ceees] Press B1
iotbox/box2/config 10TBox 2

Figure 1: Example of an event-based architecture in IoT

Listing 1: Example message as to be published under
iotbox/box1/monitor
{

1

2 "id": "Line A",

3 "presses": [

4+ o

5 "id": "Press Al1",

6 "ts": "2020-05-11718:01:06.158Z2",
7 "value": 10.0

8 3. {

9 "id": "Press A2",

10 "ts": "2020-05-11T18:01:06.329Z2",
1 "value": 15.5

12 3

13]
14}

controlled by 1oTBox 1 — by publishing a message with the correct
format under topic iotbox/box1/config. Since IoTBox 1 is sub-
scribed to this topic, it will receive the configuration command and
will reconfigure itself as requested. The same applies to IoTBox 2 and
Line B, but under topic iotbox/box2/config in this case.

As it can be guessed by examining the example above, one of the
major challenges that these architectures pose is consistency [17]:
the format of the messages exchanged and the topics under which
they are published and subscribed must be kept consistent through-
out the life cycle of the system. Failure to comply with this could
result in a system malfunction: if any of the agents introduces (even
minimal) changes in the definition of communications, and these
changes are not propagated to all the agents involved, interoper-
ability problems inevitably occur. Communication can cease to
be effective for two reasons: (i) because there is a divergence in
the topics under which messages are published, thus resulting in
agents not receiving messages they are interested in; or (ii) because
there is a divergence in the format of the messages of a certain
topic, and therefore these cannot be understood by the subscribers
receiving them.

Example. Listing 1 shows a well-formed message as it is published
by IoTBox 1 under topic iotbox/box1/monitor. The message con-
tains a JSON object with two fields: id and presses. id identifies
the production line, and presses is an array of objects, each one
containing three fields: a press id, the timestamp (ts) when the mea-
surement was taken on the press, and the value of the measured
pressure in Pascals. An example of divergence in the topics is the
case when the cloud subscribes to the wrong topic by mistake (e.g., to
iotbox/box1/monitoring instead of iotbox/box1/monitor). In

such case, the monitoring data of IoTBox 1 will not be delivered to
the cloud ever. An example of divergence in the format can happen if
the developers coding the cloud application do not pay attention to the
message format. For example, if the value is treated as an integer, the
decimals will be lost; or if the timestamp is treated as a long with the
epoch time (instead of as a formated string) a runtime error may occur.

3 ASYNCAPIL: TOWARDS A STANDARD
LANGUAGE FOR DESCRIBING
EVENT-BASED ARCHITECTURES

Aforementioned consistency issues are not unique to event-based
architectures where communication occurs asynchronously. In fact,
other architectures also manifest them, as it is the case of resource-
oriented architectures where communication occurs synchronously.
However, in these cases, the industry has already proposed stan-
dardized solutions to support the development of such architectures.
An example is OpenAPI and its complete ecosystem. The OpenAPI
Specification [29] is a description format for APIs based on the
REST [13] paradigm that allows, among other things, to specify the
operations offered by the API, the parameters of each operation,
the authentication methods, etc.

For event-based architectures, and taking inspiration from Ope-
nAPI the AsyncAPI Specification [3] proposal has recently emerged
as a promising alternative. AsyncAPI descriptions are expected to
be both human and machine readable. To achieve this goal, files
defining a message-driven API are represented as JSON objects and
conform to the JSON standard!. Such files allow describing, among
other things, the message brokers of an architecture, the topics of
interest, or the different formats of the messages associated with
each of the topics. Next, we introduce the most preeminent concepts
— JSON objects in the Specification — of the AsyncAPI proposal for
future reference:

The AsyncAPI object is the root document object of an API def-
inition. It combines resource listing and API declaration
together into one document. Its main fields are: asyncapi, to
specify the AsyncAPI Specification version being used; info,
an Info object; servers, a Servers object; channels, a Channels
object; and components, a Components object.

The Info object provides the API metadata, such as its title, version,
description, termsOfService, contact, and license.

The Servers object is a map of Server objects.

A Server object typically represents a message broker (or a similar
computer program). This object is used to capture details
such as URLs, protocols and security configuration of such
brokers. Variable substitution is also supported. The object
contains, among other fields, a url to the target host, its pro-
tocol (e.g., http, mqtt, stomp, kafka, etc.), the protocolVersion,
a description, or a map of variables.

The Channels object is a map holding relative path names and
individual Channel Item objects. Channel paths are relative to
servers. Channels are also known as topics, routing keys, event
types or paths depending on the protocol or technology used.

1YAML, being a superset of JSON, can be used as well to represent an AsyncAPI
Specification file too.

A Channel Item object describes the operations available on a
single channel (i.e., topic). Typical fields are: description, to
describe the channel; subscribe, an Operation object; pub-
lish, an Operation object too; or parameters, a map of the
parameters included in the channel name.

An Operation object describes a publish or a subscribe operation.
This provides a place to document how and why messages
are sent and received. Most common fields are: operationld,
a unique string used to identify the operation; summary, a
short summary of what the operation is about; description,
a verbose explanation of the operation; and message, a Mes-
sage object with the definition of the message that will be
published or received on this channel.

A Message object describes a message received on a given channel
and operation. For a message, the following fields can be
specified among others: name, a machine-friendly name for
the message; title, a human-friendly title for the message;
summary; description; or payload, which can be of any type
but defaults to Schema object.

A Schema object allows the definition of input and output data
types. These types can be objects, but also primitives and
arrays. This object is a superset of the JSON Schema Speci-
fication Draft 72. Typical fields of an Schema object are: title;
type (any of “boolean”, “integer”, “number”, “string”, “object”,
“array” or “null”); enum, to limit possible values from a list of
literals; properties, to specify the fields of objects; maxItems
and minltems, to specify the cardinality of arrays; or items,
to specify the schema of the array elements.

A Reference object is a simple object which allows referencing
other components in the specification, internally and exter-
nally. It only contains the $ref field.

The Components object holds a set of reusable objects for differ-
ent aspects of the AsyncAPI definition. Elements defined
within the Components object can be referenced by using a
Reference object. Reusable objects are mapped by name in
their corresponding field. Some examples are: schemas, for
Schema definitions; messages, for Message definitions; param-
eters, for Parameters; or operationTraits and messageTraits,
which are traits that can be applied to operations and mes-
sages respectively, and are defined similarly to Operations
and Messages.

Example. Listing 2 shows, in a simplified way, how part of our
running example is specified using AsyncAPL To keep the example
manageable, we have specified only the monitoring part (thus ex-
cluding the configuration topics — e.g., iotbox/box1/config — and
associated messages). As it can be seen, in line 2, we specify that the
definition adheres to the AsyncAPI Specification version 2. 0.0, while
in line 3, we specify the information of our APL As lines 4-6 specify,
our infrastructure has a single server, called production — whose host
name is example.com — with an MQTT broker listening on port 1883.
The rest of the AsyncAPI object specifies the topics exposed by our
API, and the format of the messages that can be interchanged. This is
done via the channels property (lines 7-24), which in turn, references
some reusable artifacts that have been defined within the components

Zhttps://json-schema.org/specification-links.html#draft-7

https://json-schema.org/specification-links.html##draft-7

property (lines 25-65). Line 8 specifies the name of the only chan-
nel —i.e., topic— of our infrastructure: iotbox/{id}/monitor. As it
can be guessed, iotbox/{id}/monitor is a parameterized name,
in which the {id} substring is substituted by the actual IoTBox
name when publishing a message (thus publishing either under the

Listing 2: AsyncAPI specification for an IoTbox
{

1

2 "asyncapi": "2.0.0",

3 "info": { "title": "IoTBox API", "version": "1.0.0" },
4 "servers": {

5 "production": { "protocol": "mqtt", "url": "example.com:1883" }
6 3,

7 "channels": {

8 "iotbox/{id}/monitor": {

9 "parameters": {

10 "id": {

1 "description": "The ID of the IoTBox",

12 "schema": { "type": "string" }

13 3}

14 Jo

15 "publish": {

16 "operationId": "publishStatus",

17 "message": { "$ref": "#/components/messages/statusMessage" }
18 3,

19 "subscribe": {

20 "operationId": "subscribeStatus",

21 "message": { "$ref": "#/components/messages/statusMessage" }
22 3}

23}

24 3,

25 "components": {

26 "messages": {

27 "statusMessage": {

28 "description": "Status of a given subsystem",

29 "payload": { "$ref": "#/components/schemas/lineInfo" }
30 3}

ELI

32 "schemas": {

33 "lineInfo": {

34 "type": "object",

35 "properties": {

36 "id": {

37 "type": "string",

38 "description": "Identifier of the subsystem"

39 },

40 "presses": {

4 "type": "array",

42 "description": "Info of presses in this subsystem",
43 "items": { "$ref": "#/components/schemas/pressInfo" }
44 3}

45 3}

46 Vo

47 "pressInfo": {

48 "type": "object",

49 "properties": {

50 "id": {

51 "type": "string",

52 "description": "Identifier of the press"

53 3,

54 "ts": {

55 "type": "string",

56 "title": "Timestamp"

57 3,

58 "value": {

59 "type": "number",

60 "description": "Pressure of the press in Pascals"
61 }

62 3}

63 3}

64 7

65)

66)

iotbox/box1/monitor or iotbox/box2/monitor topics). Lines 10-
13 specify the actual information of the parameter: in line 10, we
specify its name; in line 11, we provide a description; and in line 12,
we specify its type. The publish and subscribe operations are specified
in lines 15-18 and 19-22 respectively. As both operations publish
and receive the same kind of messages, they reference the reusable
definition named statusMessage, which is defined in the messages
property of the components object (lines 27-30). The payload of a
statusMessage is a lineInfo object. The schema of lineInfo ob-
Jjects is specified in lines 33—46. A 1ineInfo is a JSON object with two
properties: id, a string value; and presses, an array of pressInfo
objects. As specified in lines 47-63, a pressInfo is an object with
three properties: an id; a timestamp (whose name is ts); and a nu-
meric value. As it can be observed, the example message shown in
Section 2 — i.e., Listing 1 — contains a 1ineInfo object conforming to
the specification in lines 33—63.

As it can be observed in the example, the AsyncAPI Specification
allows defining all the relevant information needed to design and ex-
ecute an event-driven API. However, as of writing this manuscript,
AsyncAPI is still in early stages of development, and therefore, its
tooling is still underdeveloped: although some code generators ex-
ist, they are far from complete and most of the development effort
has been put in the generation of documentation to be consumed by
humans instead. This fact has hampered the impact of the AsyncAPI
proposal in the design of a standardized development process for
event-driven architectures.

4 ASYNCAPI AS THE SINGLE SOURCE OF
TRUTH IN EVENT-DRIVEN
ARCHITECTURES

One of the major flaws of event-driven architectures, as Section 2
illustrates, is how easily the knowledge about the infrastructure
dilutes among all the elements involved in it. As a consequence, it
is very easy to introduce divergences on how messages are sent
and consumed by the different actors involved. This major flaw can,
however, be solved if a single source of truth is used throughout
the design, development and execution of the infrastructure. As
we have seen in Section 3, despite its current limitations, AsyncAPI
provides the grounds to design a complete conceptual framework
that can be used as this single source of truth. Nevertheless, in order
to make an effective use of AsyncAPI a proper process and infras-
tructure supporting not only the design, but also the whole lifecycle
of an event-driven architecture, is still needed. In order to fill this
gap, we complement the AsyncAPI proposal with a model-based ap-
proach that allows us to overcome its current limitations. Based on
our experience, using model-based techniques allows us (i) to keep
our approach modular and extensible, alleviating a possible vendor
lock-in; (ii) to integrate other IoT standards, different programming
languages and frameworks, or future projects with not yet known
requirements at Ikerlan; and (iii) to boost our productivity by taking
advantage of the plethora of model-based technologies and solu-
tions available in the market — metamodeling frameworks, code
generation engines, model transformation engines, etc.

Figure 2 shows how we envision a development workflow where
the AsyncAPI definition of an event-driven architectures can

= -
N [—— | BvF |ty T,
U LSS deiniton
AsyncAPI AsyncAPI AsyncAPI Code generation
Specification JSON grammar metamodel template
conforms to conforms to T conforms to
(S T
8 Parsing)|¢| m2T > | ulll
Manual e RETEPELEED 2 GPL
— execution
action ! -—-J I
Automatic AsyncAPI AsyncAPI (e
aeieneai»> | | JSON definition model e

Figure 2: Development process and main involved artifacts

now be the only truly single source of truth that is shared
among all the agents involved. The main involved artifacts in this
development workflow are represented as a paper sheet shape. We
call the tool implementing this workflow AsyncAPI Toolkit.

On the one hand, artifacts depicted in the figure with a solid line
represent manually created artifacts, while artifacts depicted with
a dashed line are automatically generated using different transfor-
mations. On the other hand, artifacts at the M1 layer (the model
layer), are defined - or automatically created — each time a new
development process is enacted; while artifacts at the M2 layer (the
metamodel layer) are defined only once during the development of
the toolkit itself.

Based on the AsyncAPI Specification, we propose to develop an
AsyncAPI JSON grammar that validates event-driven architecture
definitions conforming to the JSON-based AsyncAPI Specification.
We will call this textual representation the concrete syntax. Likewise,
from the AsyncAPI Specification an AsyncAPI metamodel can be
developed so that we can take advantage of all the tooling the
model-driven techniques provide us. This AsyncAPI metamodel will
provide the abstract syntax for AsyncAPI Using the concepts of this
abstract syntax, a model-to-text (M2T) transformation generating
executable code in a general purpose language (GPL) can be defined.

The executable code is a library managing all basic functionality
of a concrete event-driven infrastructure. This library can be shared
and reused by all the elements participating and collaborating in
the architecture, and can be implemented in such a way that it ex-
poses an internal domain specific language (DSL) that can be easily
employed by the client code® to perform tasks such as message cre-
ation, message parsing and processing, publications, subscriptions,
etc. For this latter step, we can again exploit the entire set of tools
available in a modeling ecosystem to create code in any GPL.

It is noteworthy to remark that we have chosen a JSON-based
concrete syntax for two main reasons: (i) we want to keep our so-
lution fully compliant with the AsyncAPI Specification; and (ii) we
consider that a lightweight modeling language will be better ac-
cepted by existing developers. This, however, does not hinder us
from designing alternative richer concrete syntaxes - e.g., graphical
modeling languages - that take advantage of the rest of our infras-
tructure (such as the AsyncAPI metamodel and code generators).

3We understand as client code the actual applications making use of the messages
sent and received, and whose logic cannot be captured in the AsyncAPI definition.
An example of client code would be the application running in the cloud which is in
charge of processing the monitoring data sent by the JoTBoxes.

Example. An architect willing to use AsyncAPI as the single
source of truth in our factory use case would proceed as follows.
The architect would use the JSON-based representation for Async-
API to define the event-driven architecture. If we consider only the
monitoring part of our use case, in practice, this definition is exactly
the one we show in Listing 2 since we propose to fully comply with
the AsyncAPI Specification. While the user is editing, our AsyncAPI
Toolkit creates the corresponding AsyncAPI model and executes the
M2T transformation generating the internal DSL on-the-fly. The gen-
erated DSL — which is an executable library in a GPL such as Java —
can be directly distributed in source code form or as packaged binaries
to the developers of the different components of the architecture (e.g.,
the IoTBoxes, the cloud, or the frontend). Thus, a developer wanting
to publish a message or consuming a message, does not need to care
about other elements in the architecture or external documentation:
all he or she has to do is to import the libraries of the DSL. The DSL
will provide all the functionality needed to connect to a specific broker,
create a specific message in the right format, and publish it, or vice-
versa: connect to the specified broker, subscribe to a specific topic, and
receive the messages in the right and native format of the platform
being used.

5 THE ASYNCAPI TOOLKIT UNDER THE
MICROSCOPE

We have implemented the AsyncAPI Toolkit workflow as an open
source solution®. As aforementioned, we have also followed model-
driven development principles to create it: instead of manually
developing a set of editors supporting the textual AsyncAPI JSON
Grammar or the AsyncAPI metamodel, we have chosen the Xtext
framework [15] to provide both a concrete and an abstract syn-
tax for AsyncAPL From an AsyncAPI JSON Grammar, Xtext can
generate all the tooling (editor with content assist, parser, etc.) to
easily create AsyncAPI JSON definitions that are automatically and
transparently transformed to AsyncAPI models which conform to
the AsyncAPI metamodel. The use of Xtext allows us to greatly
reduce the development time to obtain a working textual editor
capable of parsing AsyncAPI Specifications. Since Xtext uses the
Eclipse Modeling Framework (EMF) [14], we can take advantage of
all its ecosystem to develop the M2T transformations generating
the internal DSL. Next, we describe in detail how our AsyncAPI
Toolkit has been built® and how architects and developers can take
advantage of it.

5.1 A JSON-based concrete syntax for
AsyncAPI

The main manual step that must be done in Xtext to provide a
concrete syntax for a textual language is the development of an
Xtext grammar. Listing 3 shows an excerpt of the grammar® we have
defined to support the definition of AsyncAPI in JSON following
the concrete syntax proposed in [3].

“https://hdlhandle.net/20.500.12004/1/A/ASYNCAPI/001

5Only short illustrative excerpts of the different elements of the AsyncAPI Toolkit will
be shown for brevity purposes. For a full reference, please check our repository.
®See https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html for a
full reference of Xtext grammars.

https://hdl.handle.net/20.500.12004/1/A/ASYNCAPI/001
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html

Listing 3: Excerpt of the Xtext grammar

1 AsyncAPI: // Rule name

2 {AsyncAPI} // Output type name

3 ! // The curly brace character

4 (

5 ('""asyncapi"' ':' version=VersionNumber ','?)

6 & ('"info"' ':' info=Info ','?)

7 & ('"servers"' ':' '{' servers+=Server (',' servers+=Server)x

B Y A 4

8 & ('"channels"' ':' '{' channels+=Channel (',' channels+=
Channel)x '}' ', '?)?

9 & ('"components"' ':' components=Components ','?)?

10 // More properties omitted for brevity purposes...

mno)

2 Y

13
14 // Info rule omitted for brevity purposes...
15

16 Server:

17 {Server} name=STRING ':' '"{' (

18 ¢ ""url"™' ':' url=STRING ','?)

19 & ('"protocol"' ':' protocol=Protocol ','?)

20 & ('"description"' ':' description=STRING ',"')?
21 // More properties omitted for brevity purposes...
2) '}

23

24 // Channel and Components rule omitted for brevity purposes
25

26 enum VersionNumber:

27 _200 = '"2.0.0"";

28

29 enum Protocol:

3¢ amgp = '"amgp"' | amgps = '"amgps"' | mgtt = ""mqtt"'
31 | mgtts = '""mqtts"' | ws = '"ws"' | wss = '""wss"'
32 | stomp = '"stomp"' | stomps = '"stomps"';

33

34 terminal STRING:

35 O NN))

36 | " C NN L PN) e

37
38 // Other rules omitted for brevity purposes...

In short, we have defined an Xtext rule for each one of the
concepts defined in the Schema section of the aforementioned doc-
ument. Listing 3 shows - in a simplified way - the rules to define
in JSON an AsyncAPI specification version 2, with its Info, a set
of Servers, Channels, and the Components Section. Taking as an
example the AsyncAPI rule (line 1), in line 2 we specify that the
application of the rule will produce an AsyncAPI object when pars-
ing an input text, while lines 3 and 12 specify that a AsyncAPI is
a textual element enclosed between the characters { and }. The
parentheses in lines 4 and 11 denote an unordered group, i.e., the
patterns between them, which are separated by an & symbol, may
match only once and in any possible order. Line 5, for example,
specifies that the version of an AsyncAPI is a sequence of characters
starting with the "asyncapi" keyword, followed by a : symbol and
followed by a text matching the VersionInfo rule (which in turn, is
an enumerated, specifying that only version "2.0.0" is supported).
The value of the parsed version number will be stored in an attribute
of the AsyncAPI object named version of type VersionNumber. It
is necessary to clarify some details of the grammar: first, to get
advantage of the features provided by the Xtext unordered groups,
we have defined the commas between groups as optional (*,’? ex-
pression near the end of each group); and second, we have relaxed
the requirements of some elements marking them as optional (?
symbol at the end of each group) to minimize the number of errors

reported while parsing the input files for not overwhelming the
users of the tool. These optionalities can be, however, later enforced
programmatically so that the tool only accepts valid JSON instances.

Example. As it can be seen, the AsyncAPI definition included in
Listing 2 can be parsed by applying the rules of the grammar showed in
Listing 3: the curly brace in line 1 of Listing 2 matches the curly brace
in line 3 of Listing 3; the tokens in line 2 of Listing 2 ("asyncapi":
"2.0.0") match the tokens specified in line 5 of Listing 3; etc.

5.2 An abstract syntax for AsyncAPI

Based on the grammar above, Xtext is able to generate an equivalent
EMF-based metamodel. Fig. 3 shows the Ecore metamodel generated
as a result of the AsyncAPI JSON grammar. As aforementioned,
instances conforming to this metamodel are automatically created
out of textual descriptions thanks to the tooling generated by Xtext.
As it can be observed, it basically contains a class for each one
of the rules defined in the Xtext grammar, and each one of the
classes, contains the attributes specified in its corresponding rule.
For example, among other elements, Fig. 3 shows the AsyncAPI and
Server classes which correspond to the rules included in Listing 3, as
well as the enumerations for VersionInfo and Protocol. The existence
of this automatically generated metamodel enables the use of other
EMF-based tools, such as model transformation engines.

It is noteworthy to mention that we have been extremely careful
when defining the AsyncAPI JSON grammar so that the gener-
ated EMF-based metamodel closely represents the domain - i.e.,
the AsyncAPI Specification — and not only its textual representa-
tion. Thus, this metamodel is not only an utility artifact that
enables us to parse AsyncAPI JSON specifications, but it is a
meaningful metamodel close to the concepts of the Async-
API Specification: as it can be seen, there is a direct match be-
tween it and the main concepts explained in Section 3, and as a
consequence, we will not describe in detail the concepts shown
in the figure to avoid being redundant. Having this meaningful
metamodel allows us to build alternative concrete syntaxes that
can reuse the existing tooling minimising our development effort.

Example. The result of parsing the AsyncAPI definition in List-
ing 2 is partly shown in Figure 4. As it can be seen, the automatically
generated model contains a single root AsyncAPI object, containing
Info, Server, Channel and Component objects. The properties of the
production Server are shown in the Properties tab. As the Async-
API definition in Listing 2 specifies, the name of the Channel object
is iotbox/{id}/monitor, and it contains the operations publish-
Operation and subscribeOperation, and the Parameter id. The
Components object contains the 1ineInfo and pressInfo Schemas,
and the statusMessage Message.

5.3 An internal Java DSL for effective
event-driven communication

The last step of our proposed workflow is the generation of a li-

brary implementing an internal DSL which can be used and shared

among all the elements in the infrastructure, and that will ensure

that all participants know the same topics, and are able to create and

g Info

o title : EString

© version : EString

= description : EString

= termsOfService : EString

0..1] info

F Variable [0..*] variables

[AsyncAPI

= version : VersionNumber = “2.0.0" [0..] chanhels

[Channel

[0.."] servers
B Server

[0..1] publish

= name : EString
o description : EString

[0..1] subscribe
o title : EString

[0..1] components

[0..1] license [0..1] contact = name : EString : = —_—
= description : EString - "ﬁm;sﬁit”ng [Components
; © default : EString S BLES [Operation
[License [Contact = enum : EStrin = protocol : Protocol = "amgp" _ _
= name : EString & enum: g o description : EString = operationld : EString
url Eéning = summary : EString
o o, :
-) B = description : EString
[0..*] operationTraits [0."] schemas
@ VersionNumber . |
[0..*] messages [0..*] parameters
- _200 [0..*] messageTraits R
P | B Namedo?e’a“m“a“' | [} NamedMessage | | B NamedMessageTraitL | F NamedSchema | [NamedParameter
f=alse | © name : EString I | © name : EString I | © name : EString I‘ | = name : EString = name : EString
- :true [0..] properties
e [0..1] operationTrait [0..1] message [0..1] messageTrait [0..1] schema (0..1] parameter
ar:nqp _JE| AbslraclOperationTraitl _J [AbstractMessage l [B AbslractMessageTraitl [[AbstractSchema I [] AbstractParameter
- amaps L J L J J 1 J
e 0.1
- ..*] trait: ..1]lhead 1] items
wgns [E OperationTrait 0."] traits [0.1Jheaders
~ wss = operationld : EString [Message | | [MessageTrait | [Schema
- stomp © summary | EStrin_g = name : EString = summary : EString o title : EString
- stomps = description : EString o title : EString = description : EString © type : JsonType = "string"

= summary : EString

= deprecated : Boolean = false

= description : EString

E Reference

© uri : EString

= description : EString
= deprecated : Boolean = false

Reference inherits
from all classes with
a gray background.
Arrows for these

[0.] tags

= name : EString

= format : EString
= minimum : Elnt
= maximum : Elnt
o minltems : Elnt

B Tag
= maxltems : Elnt

inheritance
relationships have

* et q = default : EStrin,
[0.7]tags | _ description : EString B\ EStringg
[0..1] payloaft = required : EString
[0..1T headers

[0..1] schema

been omitted for

[0..1] message

clarity purposes

[0..*] traits

Figure 3: AsyncAPI metamodel

L&) factoryxemi 22 = 0
v K] platformi/resource/leTBoxAsyncAPl/factory.xmi
v 4 Async APl "2.0.0"
< Info loTBox API
<~ Server production
w 4 Channel iotbox/{id}/monitor
v < Operation publishStatus
<4 Reference #/components/messages/statusMessage
v 4= Operation subscribeStatus
< Reference #/components/messages/statusMessage
w <= Mamed Parameter id
4 Parameter The ID of the loTBox
v 4 Components
<= Mamed Schema linelnfo
<= Marmed Schema pressinfo
4 MNamed Message statusMessage

O Properties IR ~ = 0

Property
Description

Mame roduction

Protocol mott"
Url "= localhost: 1883

Figure 4: AsyncAPI definition of the factory use case repre-
sented as an instance of the AsyncAPI metamodel

consume messages conforming the same schemas and formats. Cur-
rently, our AsyncAPI Toolkit only supports the generation of Java
code, but other languages and technologies can be easily plugged
in by providing the proper code generation templates.

The M2T transformation applies the following rules:

A Server is chosen as the default Server of the architecture.

Channels are transformed to packages whose name matches the
Channel - or topic — name. Hierarchies of topics - i.e., using
slashes (/) — are respected.

Operations in Channels are transformed to classes inside the pack-
ages of their corresponding Channels. Classes for channel
Operations, among other things, provide static operations for
publishing and subscribing in their respective topics using
the default Server. If Channel permits the use of Parame-
ters, a nested class is generated to manage the parameter
substitution and recovery.

Messages do not generate a Java artifact: since there is a direct
correspondence between Messages and Schemas (via the pay-
load association) Messages information is combined within
the corresponding Schema when needed.

The Components object is transformed to a components package.

Schemas are transformed to immutable classes: they are clone-
able and serializable (via Gson’), have getters but no setters,
and have a private constructor. Instances are created via a
dedicated nested builder class.

https://github.com/google/gson

https://github.com/google/gson

Schema classes can be generated directly in the components
package if they are reusable, or nested. For example, an
Operation can have nested declarations for its corresponding
Message and Schema. In that case, the Schema class is declared
as a nested class within the Operation class.

As it can be seen, the library provides specific artifacts for the
most important concepts of the AsyncAPI definition: operations on
each channel - topic — are unequivocally grouped in their specific
packages; payloads of messages can only be created by using specific
builders; and messages can only be sent and received using dedicated
methods of specific classes.

Forcing developers to use builder classes and getters of the gen-
erated Schema classes — among other things — guarantees that the
structure and the type of the messages is preserved and shared
among all the elements of the architecture. The same applies, for
example, with respect to the classes for publishing and subscribing
since the relationship between Channels, Operations, Messages and
Schemas is explicitly encoded in the internal DSL: static typing in
Java ensures that developers do not mix incompatible types, or pub-
lish (or receive) messages in the wrong topics®. This approach seeks
that developers keep their code up to date with respect to the latest
version of the AsyncAPI definition used in the shared architecture.

Example. Listings 4 and 5 show two examples of client code us-
ing the internal DSL generated for our example AsyncAPI definition

8In any case, these checks can be proactively done in the generated code following a
fail fast approach in the case these features are not natively provided by the language
of the generated code (e.g., dynamically typed languages).

Listing 4: Main class of the IoTBox Publisher

1 package main;

2

3 import java.text.MessageFormat;

4 import java.time.Instant;

5 import iotbox._id_.monitor.PublishStatus;

6 import iotbox._id_.monitor.PublishStatus.PublishStatusParams;
7 import schemas.LineInfo;

8 import schemas.PressInfo;

9

10 public class Publish {

n public static void main(String[] args) throws Exception {

12 LineInfo payload =

13 LineInfo.newBuilder ()

14 .withId("Line A")

15 .addToPresses (

16 PressInfo.newBuilder ()

17 .withId("Press A1")

18 .withTimestamp(Instant.now().toString())
19 .withValue (10.0)

20 .build ()

21)

22 .addToPresses (

23 PressInfo.newBuilder ()

24 .withId("Press A2")

25 .withTimestamp(Instant.now().toString())
26 .withValue (15.5)

27 Lbuild ()

28)

29 Lbuild ()

30 PublishStatusParams params =

31 PublishStatusParams.create().withId("box1");
32 PublishStatus.publish(payload, params);

33 }

34 }

in Java (Listing 2), and more specifically, Listing 4 shows the code
needed to create and publish the example message shown in List-
ing 1. As it can be seen in the imports (lines 5-6), there exists a
iotbox._id_.monitor package (generated from the iotbox/{id}
/monitor Channel), with a PublishStatus class (generated from
the publishStatus Operation). Since the iotbox/{id}/monitor
Channel has an id parameter, also a PublishStatusParams is cre-
ated for the substitution and recovery of parameter values. It can also
be seen that reusable Schemas (1ineInfo and pressInfo) produce
the corresponding classes in the schemas package (see lines 7-8).

Thus, in order to create the message, developers only need to use the
provided classes. For example, to create an instance of LineInfo, a
new LineInfoBuilder can be obtained by invoking LineInfo.new-
Builder() (line 13), and then, it can be initialized by using the pro-
vided fluent interface [16] (e.g., methodswithId and addToPresses).
If any of the methods needs another object as an argument — such
as for addToPresses — it can be created by using the corresponding
builder as shown in lines 15-21. When a friendly name is available
for a given property — for example, because a title was specified —
the method provided by the fluent interface will use it instead of the
actual Schema property name. Lines 18 and 25 are an example of
this: timestamps are a property called ts, but the provided method
iswithTimestamp rather than withTs, thus making the code more
understandable. Once all the properties have been set, the build()
method is invoked. It is noteworthy to mention that validation logic —
such as checking of required properties — could also be added in the
build() method following a fail fast approach.

Finally, once the payload of the message and the parameters have
been created — parameters are created using a similar fluent interface
as shown in lines 30-31 — the publish operation can be invoked
(see line 32). The publish method of the PublishStatus class only
accepts instances of LineInfo as the first argument and instances of
PublishStatusParams as the second argument. The publish opera-
tion will be in charge of doing the parameter substitution, and publish-
ing the payload passed as an argument in the iotbox/box1/monitor

Listing 5: Main class of the IoTBox Subscriber

1 package main;
2
3 import java.text.MessageFormat;
4 import iotbox._id_.monitor.SubscribeStatus;
5
public class Subscribe {
public static void main(String[] args) throws Exception {
SubscribeStatus.subscribe ((params, message) -> {
System.out.println(MessageFormat.format("Message received
from IoTBox ''{@}''!", params.getId()));
10 System.out.println(MessageFormat.format("Info about
production line ''{@}'':", message.getId()));
1 message.getPresses().stream().forEach(

6
7
8
9

12 press -> System.out.println(

13 MessageFormat. format("At {0}, press ''{@}'' was pressing
at {2} Pa",

14 press.getTimestamp(),

15 press.getId(),

16 press.getValue()

17)

18)

19 E

20)8

21}

22}

topic. This will ensure that both the payload and the topic names will
be syntactically correct and will match.

Listing 5 shows how an example application — such as one running
in the cloud — will subscribe to the iotbox/+/monitor topic and will
receive messages sent to it. As it can be seen, it only needs to invoke the
SubscribeStatus. subscribe method passing a callback function
(expressed as a lambda expression in lines 8-20): the callback function
will receive the value of the parameters in the params argument —
which is of type SubscribeStatusParams — and the message pay-
load in the message argument — which is of type LineInfo. From
this point on, client code can make use of the getters provided by the
generated code to retrieve all the information from them. As it can be
seen, the example code only prints all the received information by the
standard output.

6 RELATED WORK

We compare our proposal with other works around API specifi-
cations, IIoT languages and code-generators and model-based ap-
proaches for communication.

As we will see, most of them focus on synchronous architec-
tures while support for event-driven ones, like we propose, is much
more limited.

6.1 REST APIs

AsyncAPI was inspired by the previous work on OpenAPI (formerly
Swagger) [33]. OpenAPI allows to describe RESTful APIs [34] and
includes several tools to assist developers, e.g., an editor, docu-
ment generator, code generator, etc. proposed by the consortium
itself and by a growing ecosystem of third-party providers (e.g.,
APIs.guru [2]). We also start to see model-based tools for OpenAPI
[11] or [10].

However, for event-driven APIs, which are the ones that Async-
API addresses, such rich ecosystem does not exist yet.

6.2 Domain-Specific Languages for IloT

As we propose, MDE has been used to accelerate the development
process of industrial systems in the Industry 4.0 context. Among
other works, the benefits of MDE for IloT have been previously
analyzed by Capilla et al. [4], and Young et al. [37], including some
guidelines when modeling such systems to maximize their effec-
tiveness [7].

In particular, several DSLs to model specific parts of IoT com-
munication systems have been explored. One of such approaches
is the one presented by Sneps-Sneppe and Namiot [32], where the
authors present an extension of Java Server Pages to generate a
web-based DSL to use in IoT applications. The proposed DSL en-
ables IoT communications between the devices that support the
process and the sensors. Negash et al. [27] also propose a DSL that
is specifically designed for IoT, namely DoS-IL. However, they go
further and also created an interpreter for the DOM, allowing the
browser to be manipulated through scripts that interact with the
DOM. CREST, presented by Klikovits et al. [24], is another DSL that
aims to model CPSs of small scale that has synchronous evolution
and reactive behavior.

However, these works focus on the data model, while the base for
our approach are the messages and operations themselves. One ex-
ception is the work of Ivanchikj and Pautasso [21]. In their work, the
authors present RESTalk, a DSL for modeling and visualizing REST-
ful conversations, i.e., a model of all possible sequences of HTTP
message exchanges between client and servers. As before, RESTalk
is based on the model of the OpenAPI Specification, and provides a vi-
sual and textual DSL. There are no message-oriented DSL solutions
for event-driven architectures as the one we propose herein.

6.3 Automatic code generation for IIoT

Beyond modeling IToT systems, some approaches go one step fur-
ther and also target the partial code generation of the systems from
such models.

This is the case of Ciccozzi and Spalazzese [5], where the authors
present the MDE4IoT framework. As seen with others before, this
framework focuses on the data model and not on the messages
that need to be exchanged while the system is running. Another
approach is TRILATERAL [17, 20], a tool that uses MDE with IoT
communication protocols to generate artifacts for industrial CPSs.
This tool allows using a visual editor to input a model based on
the IEC 61850 standard for electrical substations and the tool au-
tomatically generates the C++ code that enables the devices to
communicate using HTTP-REST, CoAP, or WS-SOAP (all of them
synchronous). The Web of Things (WoT) [36] is an approach that
tries to enable interoperability among devices sharing the definition
of a common data model. It is still a work in progress, but there
are some works that use it, such as Delicato et al. [8] and Iglesias-
Urkia et al. [18, 19]. Nevertheless, the central building block in the
WoT is the Thing Description, which defines the data model and the
communication, but it is not targeted to event-driven architectures.

6.4 Model-based approaches for message-based
architectures

Only a few works propose the use of MDE to describe the actual
communication in an IIoT architecture, and not just the data. One of
such examples is the one from Riedel et al. [30], where the authors
present a tool that generates C, C# and Java code that uses SOAP
Web Services (WS-SOAP) as the communication protocol. They pro-
pose the use of the Essential Meta-Object Facility (EMOF) [28] for
data metamodels and EMF to generate the messages between IoT
subsystems. The tool allows configuring which part of the generated
code runs on the gateway and which part on the IoT node. However,
although this approach is similar to ours in the sense that it also
models the messages to exchange, the main difference relies in that
theirs uses SOAP communication, which makes it synchronous
communication instead of an asynchronous event-driven one. An-
other example is the work of Thramboulidis and Christoulakis [35],
which integrates CPSs and IoT with a framework named UML4IoT
that allows automating the process of generating CPSs. To do that,
the CPSs are modeled using SysML and implemented using an
object-oriented API that is later transformed to a RESTful API,
using LWM2M for the communication, which is also synchronous.

To sum up, while there are a few works focusing on a goal
similar to ours, they mostly target REST APIs or synchronous envi-
ronments. Although there is some previous research on modeling

event-driven architectures, such as the one by Clark and Barn [6],
to the best of our knowledge, ours is the first approach that is based
on an event-driven approach - in this case using the AsyncAPI
Specification — and that generates the necessary code automatically.

7 DISCUSSION

AsyncAPI Toolkit has been developed in the context of the Mega-
M@Rt2° project and has already been applied to some of its use
cases and other internal projects at Ikerlan. This section discusses
some of the benefits we have observed so far.

Lower development and deployment time. Adopting Async-
API Toolkit in a project significantly decreases the time to develop
and deploy the software system. On the one hand, reusing the
generic metamodel simplifies the definition of the schemas of the
project and, with the automated code generation, there is no need to
implement the boilerplate code in the client side, reducing manual
tasks. Our preliminary observations!? show a reduction in the devel-
opment time of the infrastructure code on nearly a 66%, reducing the
required development time from a few hours to less than an hour.

Obviously, there is are initial cost in developing AsyncAPI Toolkit
itself, training the people in using it, and adapting the continuous
integration infrastructure so that all components share the same
version of the library implementing the internal DSL. But this cost
is quickly compensated when using it over several projects, as it
happens with any new MDE infrastructure [9].

Increasing code quality. In addition to lowering development
time, the automated code generation usually is better structured
and allows to reuse common code blocks, which increases code
quality. The reused parts are already tested, hence, the validation
process of the system is more simple. In addition, the generated
code is also easier to maintain, as bugs or improvements in common
parts need to be addressed only once. This leads to a reduction on
engineering and maintenance costs.

In this sense, it has been detected that using the AsyncAPI Toolkit
in different projects, the time to detect bugs has been decreased as
more bugs are detected in the first stages of implementation and
execution of the developed systems.

DSL benefits for Industry 4.0. Another upside is that, as di-
verse existing application domains share similarities — especially
regarding communication requirements — the same solution can be
applicable to all of them. In this context, we can more easily port our
AsyncAPI-based solutions to a variety of related domains. This is es-
pecially interesting in the context of software product lines (SPLs).

Easy documentation. AsyncAPI includes a tool to automati-
cally generate documentation out of an API. With it, given the
specific model created by the toolkit (in JSON or YAML format)
as input, AsyncAPI is able to generate its corresponding HTML or
Markdown documentation.

At Ikerlan this feature has been regarded as an important aspect
in the decision to move forward with the adoption of AsyncAPI
Toolkit. This documentation capability together with the use of
AsyncAPI as single source of truth enables all project participants

“https://megamart2-ecsel.eu
104 thorough evaluation of development time reduction is still in progress.

(stakeholders, designers, architects, etc.) to share a common defini-
tion of the API, favouring interoperability and reducing the number
of errors in the software development life cycle.

Requirement definition, validation and maintainability.
Being an message-driven architecture, capturing the requirements
can be directly done with the AsyncAPI definition. Therefore, there
is no need to maintain a separate text document that needs to be
interpreted by developers, as the requirements are specified in the
AsyncAPI definition itself.

This has been another key reason to select AsyncAPI for ongoing
and future projects at Ikerlan. Combined with the previous point,
we see AsyncAPI Toolkit as a toolkit able to support most phases
of the development cycle, from requirements to code-generation
to — in the future - testing.

8 CONCLUSIONS

This article presents AsyncAPI Toolkit, a toolkit that allows spec-
ifying an event-driven API using AsyncAPI and generates code
automatically. AsyncAPI Toolkit decreases the development time
for projects that have monitoring and control requirements with
asynchronous communication.

As future work, we plan to improve the usability of the process
by having a complete Ecore-based importer that facilitates boot-
strapping the AsyncAPI definition from existing domain models.
Similarly, we will provide additional code generation templates
to cover other languages beyond the current Java target. Besides
code-generation, our AsyncAPI metamodel could be used to gener-
ate other software artifacts like test suites. Finally, we will perform
additional empirical validations that help us better understand the
specific trade-offs of introducing our model-based AsyncAPI infras-
tructure in new industrial projects.

ACKNOWLEDGMENTS

This project has received funding from the Electronic Component
Systems for European Leadership Joint Undertaking under grant
agreement No. 737494 — this Joint Undertaking receives support
from the European Union’s Horizon 2020 research and innovation
program and from Sweden, France, Spain, Italy, Finland & Czech Re-
public — and from the Spanish government under project Open Data
for All (RETOS TIN2016-75944-R).

REFERENCES

[1] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. 2015. Internet of Things: A Survey on Enabling Technolo-
gies, Protocols, and Applications. IEEE Communications Surveys Tutorials 17, 4
(Fourthquarter 2015), 2347-2376.

[2] APIs.guru. [n.d.]. API tooling for better developer experience. https://apis.guru/.

[3] AsyncAPIInitiative. [n.d.]. AsyncAPI specification 2.0.0. URL: https://www.asyn
capi.com/docs/specifications/2.0.0/, last accessed May 2020.

[4] Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés, and Mike Hinchey.
2014. An overview of Dynamic Software Product Line architectures and tech-
niques: Observations from research and industry. Journal of Systems and Software
91(2014), 3 - 23.

[5] Federico Ciccozzi and Romina Spalazzese. 2017. MDE4IoT: Supporting the In-
ternet of Things with Model-Driven Engineering. In Intelligent Distributed Com-
puting X, Costin Badica, Amal El Fallah Seghrouchni, Aurélie Beynier, David
Camacho, Cédric Herpson, Koen Hindriks, and Paulo Novais (Eds.). Springer
International Publishing, Cham, 67-76.

[6] Tony Clark and Balbir S. Barn. 2012. A Common Basis for Modelling Service-
Oriented and Event-Driven Architecture. In Proceedings of the 5th India Software

https://megamart2-ecsel.eu
https://apis.guru/
https://www.asyncapi.com/docs/specifications/2.0.0/
https://www.asyncapi.com/docs/specifications/2.0.0/

(71

8

=

(9]

[10]

(1]

[12]

[13]

[14]
[15]

[16

[17]

[18

[19]

[20]

[21]

[22]

[23

Engineering Conference (Kanpur, India) (ISEC ’12). Association for Computing
Machinery, New York, NY, USA, 23-32. https://doi.org/10.1145/2134254.2134258
Tuhin Kanti Das and Juergen Dingel. 2018. Model development guidelines for
UML-RT: conventions, patterns and antipatterns. Software and Systems Modeling
17, 3 (2018), 717-752. https://doi.org/10.1007/s10270-016-0549-6

Flavia C. Delicato, Paulo F. Pires, and Thais Batista. 2013. Middleware Solutions
for the Internet of Things. Springer Publishing Company, Incorporated, London.
Oscar Diaz and Felipe M. Villoria. 2010. Generating blogs out of product cat-
alogues: An MDE approach. . Syst. Softw. 83, 10 (2010), 1970-1982. https:
//doi.org/10.1016/j.jss.2010.05.075

Hamza Ed-Douibi, Javier Luis Canovas Izquierdo, and Jordi Cabot. 2018. Au-
tomatic Generation of Test Cases for REST APIs: A Specification-Based Ap-
proach. In 22nd IEEE International Enterprise Distributed Object Computing Con-
ference, EDOC 2018, Stockholm, Sweden, October 16-19, 2018. 181-190. https:
//doi.org/10.1109/EDOC.2018.00031

Hamza Ed-Douibi, Javier Luis Canovas Izquierdo, and Jordi Cabot. 2018. Ope-
nAPItoUML: A Tool to Generate UML Models from OpenAPI Definitions. In Web
Engineering - 18th International Conference, ICWE 2018, Caceres, Spain, June 5-8,
2018, Proceedings. 487-491. https://doi.org/10.1007/978-3-319-91662-0_41

Dave Evans. 2011. The internet of things: How the next evolution of the internet
is changing everything. CISCO white paper 1, 2011 (2011), 1-11.

Roy Thomas Fielding. 2000. REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation. University of California,
Irvine.

The Eclipse Foundation. [n.d.]. Eclipse Modeling Project - Eclipse Modeling
Framework - Home. http://www.eclipse.org/emf/, last accessed May 2020.

The Eclipse Foundation. [n.d.]. Xtext - Language Engineering Made Easy! http:
/Iwww.eclipse.org/Xtext/, last accessed May 2020.

Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addison-Wesley
Professional.

Aitziber Iglesias, Markel Iglesias-Urkia, Beatriz Lopez-Davalillo, Santiago Char-
ramendieta, and Aitor Urbieta. 2019. TRILATERAL: Software Product Line
based Multidomain IoT Artifact Generation for Industrial CPS. In Proceed-
ings of the 7th International Conference on Model-Driven Engineering and Soft-
ware Development - Volume 1: MODELSWARD,. INSTICC, SciTePress, 64-73.
https://doi.org/10.5220/0007343500640073

Markel Iglesias-Urkia, Abel Gomez, Diego Casado-Mansilla, and Aitor Urbieta.
2020. Automatic generation of Web of Things servients using Thing Descriptions.
Personal and Ubiquitous Computing (July 2020). https://doi.org/10.1007/s00779-
020-01413-3

Markel Iglesias-Urkia, Abel Gomez, Diego Casado-Mansilla, and Aitor Urbieta.
2019. Enabling easy web of things compatible device generation using a model-
driven engineering approach. ACM International Conference Proceeding Series
(2019). https://doi.org/10.1145/3365871.3365898

Markel Iglesias-Urkia, Aitziber Iglesias, Beatriz Lopez-Davalillo, Santiago Char-
ramendieta, Diego Casado-Mansilla, Goiuria Sagardui, and Aitor Urbieta. 2020.
TRILATERAL: A Model-Based Approach for Industrial CPS — Monitoring and
Control. In Model-Driven Engineering and Software Development, Slimane Ham-
moudi, Luis Ferreira Pires, and Bran Seli¢ (Eds.). Springer International Publishing,
Cham, 376-398.

Ana Ivanchikj and Cesare Pautasso. 2020. Modeling Microservice Conversations
with RESTalk. Springer International Publishing, Cham, 129-146. https://doi.or
£/10.1007/978-3-030-31646-4_6

Nasser Jazdi. 2014. Cyber physical systems in the context of Industry 4.0. In 2014
IEEE International Conference on Automation, Quality and Testing, Robotics. 1-4.
https://doi.org/10.1109/AQTR.2014.6857843

Henning Kagermann, Johannes Helbig, Ariane Hellinger, and Wolfgang Wahlster.
2013. Recommendations for implementing the strategic initiative INDUSTRIE 4.0:
Securing the future of German manufacturing industry; final report of the Industrie
4.0 Working Group. Forschungsunion.

[24

[25

[26

[27

[28

[29

Stefan Klikovits, Alban Linard, and Didier Buchs. 2018. CREST - A DSL for Reac-
tive Cyber-Physical Systems. In System Analysis and Modeling. Languages, Meth-
ods, and Tools for Systems Engineering, Ferhat Khendek and Reinhard Gotzhein
(Eds.). Springer International Publishing, Cham, 29-45.

Paulo Leitdo, Armando Walter Colombo, and Stamatis Karnouskos. 2016. In-
dustrial automation based on cyber-physical systems technologies: Prototype
implementations and challenges. Computers in Industry 81 (2016), 11-25.
Brenda M Michelson. 2006. Event-driven architecture overview. Patricia Seybold
Group 2, 12 (2006), 10-1571.

Behailu Negash, Tomi Westerlund, Amir M. Rahmani, Pasi Liljeberg, and Hannu
Tenhunen. 2017. DoS-IL: A Domain Specific Internet of Things Language for
Resource Constrained Devices. In Procedia Computer Science, Shakshuki E. (Ed.),
Vol. 109. Elsevier BV., 416-423. https://doi.org/10.1016/j.procs.2017.05.411
OMG. [n.d.]. Meta Object Facility (MOF), Ver. 2.5.1. http://www.omg.org/spec
/MOF/2.5.1/.

OpenAPI Initiative. [n.d.]. OpenAPI Specification. URL: https://github.com/OAI
/OpenAPI-Specification, last accessed May 2020.

Till Riedel, Nicolaie Fantana, Adrian Genaid, Dimitar Yordanov, Hedda R.
Schmidtke, and Michael Beigl. 2010. Using web service gateways and code
generation for sustainable IoT system development. In 2010 Internet of Things
(IOT). Tokyo, Japan, 1-8. https://doi.org/10.1109/I0T.2010.5678449

Klaus Schwab. 2017. The Fourth Industrial Revolution. Crown Publishing Group.
Manfred Sneps-Sneppe and Dmitry Namiot. 2016. On web-based domain-specific
language for Internet of Things. In International Congress on Ultra Modern Telecom-
munications and Control Systems and Workshops, Vol. 2016-January. IEEE Com-
puter Society, 287-292. https://doi.org/10.1109/ICUMT.2015.7382444
SmartBear Software. [n.d.]. What Is OpenAPI? https://swagger.io/docs/specific
ation/about/.

Yahya Tashtoush, Mohammed Nour AlRashdan, Osama Salameh, and Mohamamd
Alsmirat. 2019. Swagger-based jQuery Ajax Validation. In 2019 IEEE 9th Annual
Computing and Communication Workshop and Conference (CCWC). 0069-0072.
https://doi.org/10.1109/CCWC.2019.8666542

Kleanthis Thramboulidis and Foivos Christoulakis. 2016. UML4IoT—A UML-based
approach to exploit IoT in cyber-physical manufacturing systems. Computers in
Industry 82 (2016), 259-272. https://doi.org/10.1016/j.compind.2016.05.010
W3C. 2019. Web of Things at W3C. https://www.w3.org/WoT/.

Bobbi Young, Judd Cheatwood, Todd Peterson, Rick Flores, and Paul C. Clements.
2017. Product Line Engineering Meets Model Based Engineering in the Defense
and Automotive Industries. In Proceedings of the 21st International Systems and
Software Product Line Conference, SPLC 2017, Volume A. 175-179.

https://doi.org/10.1145/2134254.2134258
https://doi.org/10.1007/s10270-016-0549-6
https://doi.org/10.1016/j.jss.2010.05.075
https://doi.org/10.1016/j.jss.2010.05.075
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1007/978-3-319-91662-0_41
http://www.eclipse.org/emf/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/
https://doi.org/10.5220/0007343500640073
https://doi.org/10.1007/s00779-020-01413-3
https://doi.org/10.1007/s00779-020-01413-3
https://doi.org/10.1145/3365871.3365898
https://doi.org/10.1007/978-3-030-31646-4_6
https://doi.org/10.1007/978-3-030-31646-4_6
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1016/j.procs.2017.05.411
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://doi.org/10.1109/IOT.2010.5678449
https://doi.org/10.1109/ICUMT.2015.7382444
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://doi.org/10.1109/CCWC.2019.8666542
https://doi.org/10.1016/j.compind.2016.05.010
https://www.w3.org/WoT/

	Abstract
	1 Introduction
	2 Motivation
	3 AsyncAPI: Towards a standard language for describing event-based architectures
	4 AsyncAPI as the single source of truth in event-driven architectures
	5 The AsyncAPI Toolkit under the microscope
	5.1 A JSON-based concrete syntax for AsyncAPI
	5.2 An abstract syntax for AsyncAPI
	5.3 An internal Java DSL for effective event-driven communication

	6 Related Work
	6.1 REST APIs
	6.2 Domain-Specific Languages for IIoT
	6.3 Automatic code generation for IIoT
	6.4 Model-based approaches for message-based architectures

	7 Discussion
	8 Conclusions
	Acknowledgments
	References

